期刊文献+

涡轮机匣弯曲靶面冲击射流换热特性研究

Study on Heat Transfer Characteristics of Impact Jet of Turbine Bending Surface
下载PDF
导出
摘要 航空发动机内空气冷却系统流通通道结构复杂。在各种复杂结构中,能有强烈换热过程的局部特征就是冲击换热。故以机匣环腔结构作为研究对象,在所研究的流动参数及结构参数范围内发现:相同冲击Re j下,随着冲击间距(H/d)的增大,冲击靶板上的温度分布更加均匀;当冲击孔角度(β)为90°时,冲击靶板面换热效果更佳;冲击孔周向角(α)越小,冲击靶板面的的整体温度水平越低,并且温度分布更为均匀;随着横流比(m c/m)的增大,冲击驻点的温度在逐渐降低,换热系数也在逐渐提高。 The structure of the air cooling system channel in the aeroengine is very complicated.Among various complex structures,the local feature with a strong heat exchange process is the impact heat transfer.Therefore,this paper considers the structure of the casing ring cavity as the research object,in the range of flow parameters and structural parameters studied,it is found that:the temperature distribution on the impact target plate is more uniform with the increase of the impact spacing(H/d)under the same impact Re;When the impact hole angle(β)is 90°,the heat exchange effect of the impact target surface is better;The smaller the circumferential angle(α)of the impingement hole,the lower the temperature level of the impact target surface and the more uniform temperature distribution;As the cross flow ratio(m c/m)increases,the temperature of the impact stagnation point gradually decreases,and the heat transfer coefficient also gradually increases.
作者 陈振华 崔成成 董奇 杨卫华 CHEN Zhenhua;CUI Chengcheng;DONG Qi;YANG Weihua(College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Energy and Environment,Southeast University,Nanjing 210016,China;China Aviation Powerplant Research Insititute,AVIC,Zhuzhou 412002,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第4期182-193,共12页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金项目(51276088)。
关键词 涡轮机匣 冲击间距 冲击孔角度 冲击孔周向角 横流比 turbine casing impact spacing impact angle impact hole circumferential angle cross flow ratio
  • 相关文献

参考文献8

二级参考文献53

  • 1冷浩,张西民,郭烈锦,马重芳.变压器油圆形冲击射流在较高Re数下恢复效应的实验研究[J].工程热物理学报,2002,23(S1):137-140. 被引量:1
  • 2张靖周,李永康,谭晓茗,李立国.阵列射流冲击冷却局部对流换热特性的数值计算与实验研究[J].航空学报,2004,25(4):339-342. 被引量:45
  • 3Florschuetz L W, Isoda Y. Flow distributions and discharge coefficient effects for jet array impingement with initial crossflow[J]. Journal of Engineering for Power, 1983, 105(3): 296-303.
  • 4Florschuetz L W, Metzger D E, Su C C. Heat transfer characteristics for jet array impingement with initial crossflow[R]. ASME Paper 83-GT- 28, 1983.
  • 5Huber A M, Viskanta R. Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets[J]. International Journal of Heat and Mass Transfer, 1994, 37:2859-2869.
  • 6Kim K, Camci C. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique[J]. International Journal of Turbo and Jet Engines, 1995, 12(1) : 1-19.
  • 7Van Treuren K, Wang Z, Ireland P,et al. Detailed measurements of local heat transfer coefficient and adiabatic wall temperature beneath an array of impingement jets [J]. Journal of Turbomachinery, 1995,116(2) : 369-374.
  • 8CHEN Wanbing, CHANG Haiping. 3 D numerical simulation of impinging jet cooling with initial crossflow[R]. ASME Paper 99-GT-256, 1999.
  • 9Huang Y, Ekkad S V, Han J C. Detailed heat transfer distributions under an array of orthogonal impinging jets [J]. AIAA Journal of Thermophysics and Heat Transfer, 1998,12(1): 73- 78.
  • 10ZHANG Jingzhou, LI Liguo, High resolution heat transfer coefficient measurement for jet impingement using thermochromic liquid crystals[J]. Chinese Journal of Aeronatics, 2001, 14(4): 205-209.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部