期刊文献+

扩散角对文丘里管内湍流影响的试验研究 被引量:7

Experimental Study on Effect of Diffusion Angle on Turbulence in Venturi Tube
原文传递
导出
摘要 为研究扩散角对文丘里管内湍流的影响,采用立体粒子图像测速技术分别对扩散角度为10°、12.5°、15°以及20°的文丘里管扩散段区域进行了测量,得到了平均速度分布,并通过瞬时速度场的统计分析得到了扩散段湍动能分布情况。研究表明,不同扩散角度的文丘里管扩散段内平均速度在截面直径方向成轴对称的单峰分布,湍动能在截面直径上成轴对称的双峰分布,在各试验工况下扩散段内均发生流动分离现象。随扩散角度增加,湍动能峰值增加,主流区径向宽度未发生变化,分离流区径向宽度增加,但对分离流区所占比例的影响较小,高湍动能区变宽;随着雷诺数的增加,湍动能峰值增加,主要由轴向雷诺应力引起,分离流区所占比例略有降低,但主流区和分离流区分布变化较小。此研究为高雷诺数不同角度的文丘里管流场研究提供了实验基础。 In order to study the effect of the diffusion angle on the turbulence in the venturi tube, in this work, the stereo-particle image velocimetry is used to measure the transient velocity of the diffusion part of venturi tube, which diffusion angle is 10°, 12.5°, 15°and 20°, respectively, and the time-averaged velocity is obtained. Based on the transient velocity of the diffusion part of the venturi tube, the distribution of turbulent kinetic energy in the diffusion section is obtained by statistical analysis of the instantaneous velocity field. It is shown that the average velocity in the diffusion section of the venturi tubes of different structures presented an axisymmetric single peak distribution in the direction of the section diameter, and the turbulent kinetic energy presented an axisymmetric double peak distribution in the section diameter. Flow separation can be observed in all experimental condition. With the increasing of the diffusion angle, the largest turbulent kinetic energy increases, but the radial width of the main flow zone does not change, and the radial width of the separation flow zone increases, but the effect on the proportion of the separation flow zone is small, and the high turbulent kinetic energy zone widens. With the increasing of Reynolds number, the peak value of turbulent kinetic energy increases, which is mainly caused by the axial Reynolds stress, and the proportion of separated flow area decreased slightly, but the distribution of main flow area and separated flow area changes little. This study provides an experimental basis for studying the flow field of the venturi tube with high Reynolds number at different angles.
作者 申屠云奇 宋煜晨 尹俊连 袁宏 王德忠 Shentu Yunqi;Song Yuchen;Yin Junlian;Yuan Hong;Wang Dezhong(School of Nuclear Science and Engineering,Shanghai Jiao Tong University,Shanghai,200240,China;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2021年第2期16-22,共7页 Nuclear Power Engineering
基金 国家自然科学基金(11535009,11675105)。
关键词 文丘里管 扩散角度 流动分离 湍动能 Venturi Diffusion angle Flow separation Turbulent kinetic energy
  • 相关文献

参考文献3

二级参考文献22

  • 1徐振华,赵红卫,方为茂,钟本和,潘美英,陈刚,罗永钦.金属微孔管制造微气泡的研究[J].环境污染治理技术与设备,2006,7(9):78-82. 被引量:14
  • 2张敏弟,王国玉,张建波,高德明.绕Hydronautics水翼空化云流动的实验研究[J].工程热物理学报,2007,28(3):424-426. 被引量:3
  • 3吴占松,谢菲.用于管道煤粉流量测量的文丘里管型设计及优化[J].清华大学学报(自然科学版),2007,47(5):666-669. 被引量:18
  • 4孙欣,陈刚,张启昌.高炉煤粉喷吹控制系统[M].北京:电子工业出版社,1995.
  • 5Lee J,Crowe C T.Scaling law for metering the flow of gas—particle suspensions through venturis[J].ASME Journal of Fluids Engineering,1982,104(1):88—91.
  • 6Shaffer F D,Bajuza R A.Analysis of venturi performance for gas—particle flows[J].ASME Journal of Fluids Engineering,1990,112(1):121—127.
  • 7Farbar L.The Venturi as a meter for gas—solids mixtures[J].Trans ASME,1953,75(5):943—951.
  • 8ROBERTSON R C, SMITH O L. Two-fluid molten-salt breeder reactor design study, ORNL- 4528[R]. US: Atomic Energy Commission, 1968.
  • 9GABBARD C H. Development of a Venturi type bubble generator for use in the molten-salt reac- tor xenon removal system, ORNL-TM-4122[R] US: Atomic Energy Commission, 1972.
  • 10SADATOMI M, KAWAHARA A, KANO K, et al. Performance of a new micro-bubble genera- tor with a spherical body in a flowing water tube [J]. Experimental Thermal and Fluid Science, 2005, 29(5): 615-623.

共引文献28

同被引文献88

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部