期刊文献+

基于多尺度小波变换融合的视网膜血管分割 被引量:15

Retinal Blood Vessel Segmentation Based on Multi-Scale Wavelet Transform Fusion
原文传递
导出
摘要 针对眼底视网膜血管细小、轮廓模糊导致血管分割精度低的问题,提出一种多尺度框架下采用小波变换融合血管轮廓特征和细节特征的视网膜血管分割方法。通过预处理增强血管与背景的对比度,在多尺度框架下提取血管轮廓特征和细节特征,并进行图像后处理;采用小波变换融合两幅特征图像,通过计算各尺度对应像素的最大值,得到血管检测图像,最后采用Otsu法进行分割。通过在DRIVE数据集上进行测试实验,得到平均准确率、灵敏度和特异度分别为0.9582,0.7086,0.9806。所提方法能够在准确分割血管轮廓的同时保留较多细小血管分支,准确率较高。 Aiming at the problem of low accuracy of blood vessel segmentation caused by the small and blurred outline of fundus retinal blood vessels,a retinal blood vessel segmentation method using wavelet transform to fuse the contour feature and detailed feature of the blood vessel under a multi-scale framework is proposed.The contrast between the blood vessel and the background is enhanced by preprocessing,the contour feature and detail feature of the blood vessel are extracted in a multi-scale framework,and image post-processing is performed.The wavelet transform is used to fuse the two feature images,the maximum value of the corresponding pixel of each scale is calculated to obtain the blood vessel detection image,and finally the Otsu method is used for segmentation.Through the test experiment of the DRIVE data set,the average accuracy,sensitivity,and specificity are 0.9582,0.7086,and 0.9806,respectively.The method in this paper can accurately segment the contour of the blood vessel while retaining more branches of small blood vessels,and the accuracy is high.
作者 田丰 李莹 王静 Tian Feng;Li Ying;Wang Jing(College of Communication and Information Engineering,Xi′an University of Science and Technology,Shaanxi 710054,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第4期76-86,共11页 Acta Optica Sinica
基金 国家自然科学基金(61701393) 陕西省重点研发计划(2020GY-029) 陕西省教育厅科研计划项目(19JK0528)。
关键词 图像处理 视网膜血管 小波变换融合 多尺度框架 血管分割 image processing retinal blood vessel wavelet transform fusion multi-scale frame vessel segmentation
  • 相关文献

参考文献4

二级参考文献33

  • 1Goshtasby A A,NIkolov S.Image fusion:advances in the state of the art[J ].Inf.Fusion,2007,8(2):114-118.
  • 2Pohl C,Van Genderen J L.Multisensor image fusion in remote se nsing:concepts,methods and applications[J].Int.J.Remote Sens.,1998,19(5):823-854.
  • 3Mitianoudis N,Stathaki T.Pixel-based and region-based image fusion schemes using ICA bases[J].Inf.Fusion,2007,8(2):131-142.
  • 4Rockinger O.Pixel level fusion of image sequences using wavele t frames[C].Proc.16th Leeds Annual Statistical Research Workshop,[C].1996,149-154.
  • 5Chung K L,Yang W J,Yan W M.Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation[J].J.Vis.Commun.Image Represent .,2008,19(5):299-310.
  • 6Chen C, Wang C D.A simple edge-preserving filtering techniq ue for constructing multi-resolution systems of images[J].Pattern Recognit.Lett.,1999,20(5) :495-506.
  • 7Perona P,Malik J.Scale-space and edge dete ction using anisotropic diffusion,IEEE Trans.Pattern Anal.Mach.Intell.,1990,12(7):629-639.
  • 8Tomasi C,Manduchi R.Bilateral filtering for g ray and color images[C].Proc.Int.Conf.on Computer Vision[C].1998,9-846.
  • 9Farbman Z,Fattal R,Lischinski D,et al.Edge-pr eserving decompositions for multi-scale tone and detail manipulation[J].ACM Trans.Graph.,2008,27(3) :1-10.
  • 10Xu L,Lu C,Xu Y,et al.Image smoothing via L0gradient minimization[J].ACM Trans.Graph.,2011,30 (6):174-12.

共引文献66

同被引文献87

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部