期刊文献+

Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy 被引量:4

原文传递
导出
摘要 Laser absorption spectroscopy(LAS) has become the most widely used laser spectroscopic technique for gas detection due to its capability of accurate quantification and straightforward operation. However, since resolving weak absorption and averting over-absorption are always mutually exclusive, the dynamic range of the LAS-based gas sensor is limited and insufficient for many applications in fundamental study and industry. To overcome the limitation on the dynamic range, this article reports optical pathlength(OPL) multiplexed absorption spectroscopy using a gas cell having multiple internal reflections. It organically fuses together the transmission and reflection operation modes: the former directly uses the entire OPL of the gas cell, while the latter interrogates different internal short OPLs by optical interferometry, yielding >100-fold OPL variation. The achieved dynamic range is more than 6 orders of magnitude that surpasses other LAS techniques by 2–3 orders of magnitude. The proposed method promotes a novel way for the development of large-dynamic-range spectroscopic gas sensors for fundamental studies and industrial applications.
出处 《Photonics Research》 SCIE EI CAS CSCD 2021年第2期193-201,共9页 光子学研究(英文版)
基金 National Natural Science Foundation of China(61775049,61575052)。
  • 相关文献

同被引文献14

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部