摘要
车辆档位信息间接反映车辆行驶状态,诸如考试、培训、安全驾驶等均需对其档位判断记录或溯源。本文以叉车为例,提出一种基于Mask R-CNN视觉感知技术的移动式、旋转式叉车操纵器档位识别方法,首先提出了基于Mask R-CNN视觉传感的叉车档位识别方法的整体架构,接着着重研究了叉车档位识别中移动式和旋转式操纵器档位识别的识别技术、叉车操纵器特征分割优化技术等,最后在一台合力K30柴油叉车上搭建试验平台进行测试。试验结果表明,该技术对叉车操纵器识别率达100%、档位判断正确率99%以上,具有无需机械改装、过程记录可溯源、准确性高、实时性较好的特点,并可拓展用于其它车辆视觉检测中。
Vehicle gear information indirectly reflects its driving status,such as examinations,training,safe driving,etc.all need to record and trace its gear.This article takes a forklift as an example to propose a mobile and rotary forklift manipulator gear recognition method based on Mask R-CNN visual perception technology,focusing on the research of the mathematical model between the mobile manipulator gear state and the calibrated gear during driving,the rotary manipulator state judgment method which can calculate the rotation angle increment of vector between the handle and the handwheel centroid in a single moment,and improve the image labeling method of forklift manipulators,this research has advantages of no mechanical modification,traceable process records,high accuracy and good real-time performance.The test results show that the research method in this paper can realize gear judgment with more than99%accuracy,and can also be applied in other vehicle visual inspection methods.
作者
陈友升
周介祺
梁敏健
刘桂雄
CHEN Yousheng;ZHOU Jieqi;LIANG Minjian;LIU Guixiong(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China;Guangdong Institute of Special Equipment Inspection and Research Zhuhai Branch,Zhuhai 519002,China;Inner Mongolia Institute of Special Equipment Inspection and Research Alashan Branch,Alasearch 750306,China)
出处
《激光杂志》
CAS
北大核心
2021年第4期68-71,共4页
Laser Journal
基金
国家市场监督管理总局技术保障专项项目(No.2019YJ014)
广东省特种设备检测研究院科技项目(No.2020JD10)。
关键词
深度学习
机器视觉
档位识别
deep learning
robot vision
gear recognition