期刊文献+

基于双流独立循环神经网络的人体行为识别 被引量:3

Human action recognition with Two-stream independently recurrent neural network
下载PDF
导出
摘要 提出了一种基于双流独立循环神经网络的人体行为识别方法。该方法结合人体行为的骨架时间结构和空间结构构建双通道神经网络。对于时间通道,根据人体运动学原理设计结合分层网络和堆叠网络的神经网络结构。对于空间通道,将原始骨架经过视角不变三维坐标变换,并把骨架坐标转换为坐标向量,有效克服人体体型和视角等差异带来的影响,以增强骨架空间表达能力。最后,由时间通道和空间增强通道分别经独立循环神经网络并综合评分识别人体行为。实验表明,所提出的模型在NTU RGB+D数据集上具有较好的识别率,结果证实该方法的有效性。 A two-stream independently recurrent neural network was proposed for human skeleton action recognition.It combined the temporal and spatial structure of the human skeleton to construct a dual-channel neural network.A network combining hierarchical network with the stacked network was designed according to human kinematics principles for the temporal channels.For the spatial channel,the original skeletons were transformed into coordinate vector through the three-dimensional coordinate transformation with an unchanged view to effectively overcome the influence of the size,shape of the human skeleton,angle and other differences and enhance the spatial expression ability of skeleton.Finally,the human behaviours were recognized by the temporal channel and the enhanced spatial channel respectively through an independent recurrent neural network and total score.Experiments show that the proposed method has a reasonable recognition rate on NTU RGB+D data sets,and the results confirm the effectiveness of the proposed method.
作者 余晓毅 宋涛 赵明富 卫排锋 马爱萍 YU Xiaoyi;SONG Tao;ZHAO Mingfu;WEI Paifeng;MA Aiping(Tielian Operation and Maintenance of Chongqing Municipal Engineering Research Centre of Institution of Higher Education,Chongqing 402260,China;Chongqing University of Technology,Chongqing 400054,China)
出处 《激光杂志》 CAS 北大核心 2021年第4期86-90,共5页 Laser Journal
基金 重庆市教委科学技术研究项目(No.KJQN201905603) 重庆市科技局技术创新与应用发展重点项目(No.cstc2019jscx-mbdx X0002)。
关键词 循环神经网络 动作识别 人体骨架 时空结构 recurrent neural network action recognition human skeleton space-time structure
  • 相关文献

参考文献5

二级参考文献161

  • 1Mokhber A,Achard C,Milgram M. Recognition of Human Behavior by Space-Time Silhouette Characterization[J].Pattern Recognition Let-ters,2008,(01):81-89.
  • 2Polat E,Yeasin M,Sharma R. Robust Tracking of Human Body Parts for Collaborative Human Computer Interaction[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2003,(01):44-69.
  • 3Kjellstr?m H,Romero J,Kragic' D. Visual Object-Action Recogni-tion:Inferring Object Affordances from Human Demonstration[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2011,(01):81-90.
  • 4Suma E A,Krum D M,Lange B. Adapting User Interfaces for Gestural Interaction with the Flexible Action and Articulated Skele-ton Toolkit[J].Computers& Graphics,2012,(03):193-201.
  • 5Ayers D,Shah M. Monitoring Human Behavior from Video Taken in an Office Environment[J].{H}IMAGE AND VISION COMPUTING,2001,(12):833-846.
  • 6López M T,Fernández-Caballero A,Fernández M A. Visual Surveillance by Dynamic Visual Attention Method[J].Pattern Recogni-tion,2006,(11):2194-2211.
  • 7Aggarwal J K,Park S. Human Motion:Modeling and Recognition of Actions and Interactions[A].Thessaloniki,Greece,2004.640-647.
  • 8Moeslund T B,Hilton A,Krüger V. A Survey of Advances in Vision-Based Human Motion Capture and Analysis[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2006,(2/3):90-126.
  • 9Poppe R. A Survey on Vision-Based Human Action Recognition[J].{H}IMAGE AND VISION COMPUTING,2010,(06):976-990.
  • 10Weinland D,Ronfard R,Boyer E. A Survey of Vision-Based Meth-ods for Action Representation,Segmentation and Recognition[J].Com-puter Vision and Image Understanding,2011,(02):224-241.

共引文献159

同被引文献48

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部