期刊文献+

甘薯基因组TCP转录因子鉴定与逆境胁迫表达分析 被引量:3

Identification of TCP transcription factors in Ipomoea batatas(L.)Lam.genome and expression analysis under stress
下载PDF
导出
摘要 基于甘薯(Ipomoea batatas(L.)Lam.)全基因组序列,利用生物信息学方法鉴定筛选了全基因组中的TCP(teosinte branched1/cincinnata/proliferating cell factor)转录因子,并分析了甘薯苗期在蔓割病菌胁迫及块根储藏期低温胁迫下TCP基因的表达差异。结果显示,甘薯基因组中共有27个TCP转录因子,其中ClassⅠ13个、ClassⅡ(CIN)8个、ClassⅡ(CYC/TB1)6个。甘薯TCP以单个基因或基因簇的形式不均匀分布在15条染色体上,其中6对基因存在潜在复制关系。甘薯ClassⅡ(CYC/TB1)转录因子含有R结构域,其氨基酸序列较为保守。在TCP家族中共发现10个保守基序(motif),基序的氨基酸序列长度为15~60个,其中motif 1含有TCP结构域,motif 3含有R结构域,TCP转录因子的保守基序种类在组间存在一定差异。逆境胁迫下甘薯的转录组数据分析结果表明,TCP转录因子在苗期受蔓割病侵染后有2个差异表达基因;在块根储藏期受低温胁迫下有11个差异表达基因。 The unique TCP transcription factor family participates in various physiological and biochemical processes in plants.Based on the whole-genome sequence of Ipomoea batatas(L.)Lam.,we used bioinformatics to screen and identify TCP transcription factors and analyze differential expression of TCP genes in seedlings under Fusarium oxysporum f.sp.batatas stress and in tubers under low temperature stress during storage.Results showed that there were 27 TCP transcription factors in the I.batatas genome,including 13 in ClassⅠ,eight in ClassⅡ(CIN),and six in ClassⅡ(CYC/TB1).The I.batatas TCP genes were unevenly distributed in the 15 chromosomes and formed six pairs of genes with potential duplication relationships.The ClassⅡ(CYC/TB1)I.batatas transcription factors contained an R domain with conserved amino acid sequences.There were 10 conserved motifs within the I.batatas TCP transcription factors,the amino acid lengths of which ranged from 15 to 60.Motif-1 contained a TCP domain and motif-3 contained an R domain.The types of conserved motifs for different groups varied to some extent.Analysis of transcriptomics data of I.batatas identified two differentially expressed genes under F.oxysporum f.sp.batatas infection during the seedling stage and 11 differentially expressed genes under low temperature stress during tuber storage.This study lays a foundation for the functional study of TCP genes and provides a reference for resistance breeding of I.batatas.
作者 毕楚韵 黄小芳 王和寿 陈其俊 胡韵卓 黄碧芳 许明 杨志坚 陈选阳 林世强 Bi Chu-Yun;Huang Xiao-Fang;Wang He-Shou;Chen Qi-Jun;Hu Yun-Zhuo;Huang Bi-Fang;Xu Ming;Yang Zhi-Jian;Chen Xuan-Yang;Lin Shi-Qiang(Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou 350002, China;College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;Ningde Agricultural and Rural Bureau, Ningde, Fujian 352100, China;Seed Centre of Fujian, Fuzhou 350003, China;Key Lab of Genetics, Breeding and Multiple Application of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
出处 《植物科学学报》 CAS CSCD 北大核心 2021年第2期163-171,共9页 Plant Science Journal
基金 福建省科技厅项目(2019N0050)。
关键词 甘薯 TCP 转录因子 生物信息学 Ipomoea batatas TCP Transcription factor Bioinformatics
  • 相关文献

参考文献6

二级参考文献54

  • 1Xuan Yao,Hong Ma,Jian Wang,Dabing Zhang.Genome-Wide Comparative Analysis and Expression Pattern of TCP Gene Families in Arabidopsis thaliana and Oryza sativa[J].Journal of Integrative Plant Biology,2007,49(6):885-897. 被引量:47
  • 2Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
  • 3Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Helm MA et al. (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15, 2497- 2502.
  • 4Bailey TL, Elkan C (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28-36.
  • 5Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000). Extensive duplication and reshuffling in the Arabidopsis genorne, Plant Cell 12, 1093-1101.
  • 6Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004), The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4, 10.
  • 7Chomczynski P, Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
  • 8Citerne HL, Luo D, Pennington RT, Coen E, Cronk QC (2003). A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol. 131, 1042-1053.
  • 9Cubas P, Lauter N, Doebley J, Coen E (1999). The TCP domain: A motif found in proteins regulating plant growth and development. Plant J. 18, 215-222.
  • 10Cubas P (2002). Role of TCP genes in the evolution of morphological characters in angiosperms. In: Cronk QCB, Bateman RM, Hawkins JA, eds. Developmental Genetics and Plant Evolution. Taylor & Francis, London. pp. 247-266.

共引文献96

同被引文献38

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部