摘要
针对传统人工总结、编写标题的方法在耗费大量人力、时间成本的同时难以应对互联网中大量不规范的文本的问题,文中设计了一种基于神经网络的文本标题生成原型系统。在文本标题生成原型系统中通过基于神经网络编码器-解码器模型对文本进行建模计算,从而经济、高效地生成一条准确、简洁、切合原文的标题。在编码器部分采用双向长短期记忆神经网络,充分利用上下文之间的语义联系。解码器部分则采用单向神经网络进行解码操作,并引入注意力机制来缓解信息丢失,提高标题生成效果。在LCSTS数据集上进行实验得到ROUGE-1、ROUGE-L评价指标分别为29.91和24.68,证明了该标题生成原型系统的有效性。
In view of the traditional manual methods cost a lot of manpower and time and can not deal with the problem of massive of non-standard texts,a prototype system of generating text titles is designed in the proposed study.In the prototype system,the non-standard text is calculated by the encoder-decoder model which is based on neural network to produce an accurate title.In the encoder part,the bidirectional long short-term memory neural network is adopted to make full use of the semantic connection between contexts.In the decoder part,one-way neural network is used for decoding operation,and attention mechanism is added to alleviate information loss and improve the effect of title generation.The evaluation indexes of ROUGE-1 and ROUGE-L obtained by experiments on LCSTS data set are 29.91 and 24.68,proving the effectiveness of the title generation prototype system.
作者
张仕森
孙宪坤
尹玲
李世玺
ZHANG Shisen;SUN Xiankun;YIN Ling;LI Shixi(College of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处
《电子科技》
2021年第5期35-41,共7页
Electronic Science and Technology
基金
国家自然科学基金青年项目(61802251)。
关键词
人工智能
自然语言处理
神经网络
标题生成
原型系统
词向量
注意力机制
生成式技术
artificial intelligence
natural language processing
neural network
title generation
prototype system
word vector
attention mechanism
generative technology