期刊文献+

突扩管道中的湍流传热数值模拟与分析研究 被引量:2

Numerical simulation and analysis of turbulent heat transfer in an expanding pipeline
下载PDF
导出
摘要 在能源、动力、化工等领域存在各式各样的管道流动,其中突扩管道尤为常见。在实际的供热工程中管道内流体流动大多为湍流流动,所以对突扩管道内的湍流传热规律进行研究具有重要意义。利用ICEM软件建立轴对称扩管数学模型并利用FLUENT软件对轴对称突扩管道中的湍流传热进行模拟和数值计算,通过温度、速度分布云图及沿加热壁面的努塞尔数的变化曲线得出突扩管道中的湍流传热规律。发现在突扩处产生回流,且传热加强。这可以给突扩管道的设计研究提供理论依据。 In energy, power, chemical and other industrial fields, there are a variety of pipeline flow, especially the sudden expansion of the pipeline is common. In practical heating engineering, the fluid flow in pipelines is mostly turbulent flow, so it is of great significance to study the law of turbulent heat transfer in the pipeline with sudden expansion. Using ICEM software to establish the mathematical model and axisymmetric expansion tube by using FLUENT software to simulate the turbulent heat transfer in axisymmetric sudden expansion pipe and numerical calculation, through the temperature and velocity distribution contours and the nusselt number along the heating surface at the sudden enlargement draw change curve of the pipeline turbulent heat transfer law. The flow returns at the point of outburst, and enhance heat transfer. This provides a theoretical basis for the design and research of the pipeline with sudden expansion.
作者 王柯 Wang Ke(Department of Thermal Engineering,Shandong University of Architecture)
出处 《区域供热》 2021年第2期68-71,共4页 District Heating
关键词 突扩管道 湍流传热 数值模拟 sudden expansion pipeline turbulent heat transfer the numerical simulation
  • 相关文献

参考文献8

二级参考文献82

  • 1刘晓利,明晓.二维突扩管流的有限分析解[J].南京航空航天大学学报,1996,28(3):427-431. 被引量:8
  • 2李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..
  • 3曲慎阳.原油管道工程[M].北京:石油工业出版社,1991.101-110.
  • 4[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 5[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 6[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 7[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 8[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 9[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 10[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.

共引文献300

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部