摘要
蒙特卡罗MC方法是核反应堆设计和分析中重要的粒子输运模拟方法。MC方法能够模拟复杂几何形状且计算结果精度高,缺点是需要耗费大量时间进行上亿规模粒子模拟。如何提高蒙特卡罗程序的性能成为大规模蒙特卡罗数值模拟的挑战。基于堆用蒙特卡罗分析程序RMC,先后开展了基于TCMalloc动态内存分配优化、OpenMP线程调度策略优化、vector内存对齐优化和基于HDF5的并行I/O优化等一系列优化手段,对于200万粒子的算例,使其总体性能提高26.45%以上。
Monte Carlo method(Monte Carlo,MC)is an important particle transport simulation method in nuclear reactor design and analysis.The MC method can simulate complex geometric shapes and the calculation results have high accuracy.The disadvantage is that it takes a lot of time to simulate hundreds of millions of particles to obtain accurate results.How to improve the performance of the Monte Carlo program has become a challenge for large-scale Monte Carlo numerical simulation.Based on the heap MC analysis program RMC,this paper has successively carried out a series of optimization methods such as dynamic memory allocation optimization based on TCMalloc,OpenMP thread scheduling strategy optimization,and vector memory alignment optimization,and parallel I/O optimization based on HDF5.Under the example of calculating 2 million particles,the overall program performance is improved by more than 26.45%.
作者
徐海坤
匡邓晖
刘杰
龚春叶
XU Hai-kun;KUANG Deng-hui;LIU Jie;GONG Chun-ye(Science and Technology on Parallel and Distributed Processing Laboratory,National University of Defense Technology,Changsha 410073;Laboratory of Software Engineering for Complex Systems,National University of Defense Technology,Changsha 410073,China)
出处
《计算机工程与科学》
CSCD
北大核心
2021年第4期634-640,共7页
Computer Engineering & Science
基金
国家重点研发计划(2017YFB0202104,2018YFB0204301)。
关键词
蒙特卡罗方法
性能优化
内存管理
并行I/O
Monte Carlo method
performance optimization
memory management
parallel I/O