摘要
随着在线教学平台的普及及推广,师生在线的有效互动和学习效果的评价成为研究的热点。在线课堂教学实施过程中的弹幕评论是师生交互的主要方式之一,教师借助学生评论可以有效地了解学生的学习效果。文章研究利用神经网络算法及文本挖掘技术对弹幕文本中出现的基础情感词语、表情符号、网络用户进行情感分析,能够为教学计划的制定和修改提供有效的数据支撑。
With the popularization and promotion of online teaching platforms,the effective online interaction between teachers and students and the evaluation of learning effects have become a research focus.Barrage comments during the implementation of online classroom teaching are one of the main ways of teacher-student interaction.Teachers can effectively understand the learning effects of students with the help of student comments.This paper uses neural network algorithms and text mining technology to analyze the basic emotional words,emoticons,and network users in the bullet screen text,which can provide effective data support for the formulation and modification of teaching plans.
作者
陆霞
武善锋
Lu Xia;Wu Shanfeng(Nanjing Normal University Taizhou College,Taizhou 225300,China)
出处
《无线互联科技》
2021年第6期167-168,共2页
Wireless Internet Technology
基金
2020年江苏省高校哲学社会科学研究一般项目
项目名称:基于深度学习的高校线上教学学生参与度的分析与提升
项目编号:2020SJA2420。
关键词
在线课堂
弹幕
神经网络
情感分析
online class
barrage
neural network
sentiment analysis