期刊文献+

基于掩模搜索的快速尺度不变特征变换图像匹配算法 被引量:5

Image Matching Algorithm for Fast Scale-Invariant Feature Transformation Based on Mask Search
原文传递
导出
摘要 尺度不变特征变换(SIFT)算法在图像匹配领域得到广泛应用,为降低其计算复杂度,提出了一种基于掩模(Mask)搜索的SIFT快速图像匹配算法。首先,分析图像的纹理信息,使用Harris算法的角点响应函数(CRF)对图像进行分区,将纹理复杂度较高的区域作为Mask并生成Mask金字塔,以减小特征点的搜索空间;其次,在极坐标系下建立7区域的圆形描述子,并降低其维度;最后,根据特征点极值类别进行同类匹配,以降低匹配复杂度。实验结果表明,采用Mask的特征搜索方法以损失较小匹配质量为代价,能够有效提升算法的整体速度,结合改进的描述子和极值分类算法可以进一步提升算法速度。采用Mask的特征搜索方法在对匹配效率有较高要求的领域具有潜在的应用价值。 The scale-invariant feature transform(SIFT)algorithm is widely used in image matching.To reduce its computational complexity,a fast SIFT image matching algorithm based on mask search is proposed.First,the texture information of the image is analyzed,and the corner response function(CRF)of the Harris algorithm is used to divide the image.The regions with higher texture complexity are used as a Mask to generate a Mask pyramid,therefore reducing the search space of the feature points;then,a seven-zone circular descriptor is established in the polar coordinate system and its dimension is reduced.Finally,the same kind matching is carried out according to the extreme value category of feature points to reduce the matching complexity.Experimental results show that the method using Mask feature searching can improve the overall speed of the algorithm at the cost of low matching quality,and it can further improve the speed of the algorithm combined with the improved descriptor and extreme value classification algorithm.Therefore,the proposed algorithm has the potential value in the application of high matching efficiency requirements.
作者 王昱皓 唐泽恬 钟岷哲 王阳 赵广文 丁才富 杨晨 Wang Yuhao;Tang Zetian;Zhong Minzhe;Wang Yang;Zhao Guangwen;Ding Caifu;Yang Chen(College of Big Data and Information Engineering,Power Semiconductor Device Reliability Engineering Center of the Ministry of Education,Key Laboratory of Micro-Nano-Electronics and Software Technology of Guizhou Province,Guizhou University,Guiyang,Guizhou 550025,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第4期167-173,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61604046) 贵州省科技计划(黔科合平台人才[2017]5788号、[2018]5781号) 半导体功率器件可靠性教育部工程研究中心开放基金(黔科合平台人才[2017]6103号)。
关键词 图像处理 图像匹配 尺度不变特征变换 掩模搜索 image processing image matching scale-invariant feature transform mask searching
  • 相关文献

参考文献6

二级参考文献53

  • 1Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150-1157.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Mikolajczyk K, Matas J. Improving descriptors for fast tree matching by optimal linear projection. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 4Klare B, Li Z F, Jain A K. Matching forensic sketches to mug shot photos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646.
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Huang C R, Chen C S, Chung P C. Contrast context histogram — an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077.
  • 7Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
  • 8Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 506-513.
  • 9Wong Y M. Invariant Local Feature for Image Matching [Master dissertation], Chinese University of Hong Kong, China, 2006.
  • 10Cui Y, Hasler N, Thormahlen T, Seidel H P. Scale invariant feature transform with irregular orientation histogram binning. In: Proceedings of the 6th International Conference on Image Analysis and Recognition. Halifax, Canada: Springer, 2009. 258-267.

共引文献91

同被引文献45

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部