期刊文献+

基于卷积特征和贝叶斯决策的双波段场景分类 被引量:3

Dual-Band Scene Classification Based on Convolutional Features and Bayesian Decision
原文传递
导出
摘要 针对可见光和近红外双波段场景分类存在图像标注样本少和特征融合质量低的问题,提出了一种基于卷积神经网络(CNN)特征提取和朴素贝叶斯决策融合的双波段场景分类方法。首先,将基于预训练的CNN模型作为双波段图像的特征提取器,避免标注样本少导致的过拟合问题;然后,通过主成分分析降维和特征归一化方法,提高支持向量机的计算速度和每个波段的分类性能;最后,以双波段后验概率为朴素贝叶斯先验概率,构建了决策融合模型,实现场景融合分类。在公开数据集上的实验结果表明,相比单一波段分类和双波段特征级联融合分类方法,本方法的识别率有明显提升,可达到94.3%;比基于传统特征的最优方法高6.4个百分点,与基于CNN的方法识别率相近,且执行简单高效。 Aiming at the problems of few labeled samples and low quality of feature fusion in visible and near infrared dual-band scene classification,a dual-band scene classification method based on convolutional neural network(CNN)feature extraction and naive Bayes decision fusion is proposed in this paper.First,the CNN model based on pre training is used as the feature extractor of dual-band image to avoid the over fitting problem caused by few labeled samples.Second,the calculation speed of support vector machine and the classification performance of each band are improved by the dimensionality reduction of principal component analysis and feature normalization method.Finally,using the dual band posterior probability as the naive Bayes prior probability,a decision fusion model is constructed to achieve scene fusion classification.Experimental results on the public dataset show that compared with single-band classification and dual-band feature cascade fusion classification methods,the recognition rate of the method is significantly improved,reaching 94.3%;it is 6.4 percentage points higher than the best method based on traditional features.The recognition rate is similar to the CNN-based method,and the execution is simple and efficient.
作者 邱晓华 李敏 张丽琼 董琳 Qiu Xiaohua;Li Min;Zhang Liqiong;Dong Lin(College of Operational Support,The Rocket Force University of Engineering,Xi'an,Shaanxi 710025,China;College of Information Engineering,Engineering University of PAP,Xi'an,Shaanxi 710086,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第4期358-366,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61102170)。
关键词 机器视觉 图像分类 朴素贝叶斯模型 双波段场景 卷积神经网络 决策融合 machine vision image classification naive Bayesian model dual-band scene convolutional neural network decision fusion
  • 相关文献

参考文献4

二级参考文献9

共引文献62

同被引文献27

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部