摘要
In the family of polyimide(PI)materials,Upilex-S^(■) film has been a shining star through the research PI materials due to its appealing merits.Unfortunately,the wholly rigid-rod backbone and easily formed skin-core micromorphology and microvoids of Upilex-S~type PI lead to the high difficulty in melt-and wet-spinning fabrication.Herein,we propose a facile and scalable method,reaction-spinning,to fabricate the Upilex-S^(■) type PI fiber,in which the rapid solidification of spinning dope and partial imidization take place simultaneously.Thus,the stability and mechanical strength of as-spun fibers can be improved,and the microvoids in fibers can be greatly reduced in relative to the wet-spun fibers.The resultant Upilex-S^(■) type PI fiber shows higher tensile strength and modulus than most commercial thermal-oxidative polymeric fibers with an ultrahigh glass transition temperature T_(g) of 478℃.Moreover,the WAXS and SAXS results indicate that orthorhombic crystals are formed for Upilex-S^(■) type PI fiber in the post hot-drawing process.Increasing the hot-drawing temperature results in a continuous crystallization and high orientation of PI chains in amorphous phase and perfects the existing lamellar structure,which make a great contribution to the improved mechanical property.
基金
supported by the National Natural Science Foundation of China(Nos.51903038,21774019,21975040)
the Program of Shanghai Academic Research Leader(No.18XD1400100)
the Scientific Research Innovation Plan of Shanghai Education Commission(No.2019-01-07-00-03-E00001).