期刊文献+

Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications 被引量:6

原文传递
导出
摘要 Zinc(Zn) and its alloys have been proposed as biodegradable implant materials due to their unique combination of biodegradability, biocompatibility, and biofunctionality. However, the insufficient mechanical properties of pure Zn greatly limit its clinical application. Here, we report on the microstructure, mechanical properties, friction and wear behavior, corrosion and degradation properties, hemocompatibility, and cytocompatibility of Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys under three different conditions of as-cast(AC),hot-rolling(HR), and hot-rolling plus cold-rolling(HR + CR). The HR + CR Zn–3 Cu–0.2 Ti exhibited the best set of comprehensive properties among all the alloy samples, with yield strength of 211.0 MPa, ultimate strength of 271.1 MPa, and elongation of 72.1 %. Immersion tests of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution for 3 months indicated that the AC samples showed the lowest degradation rate,followed by the HR samples, and then the HR + CR samples, while the HR + CR Zn–3 Cu exhibited the highest degradation rate of 23.9 m/a. Friction and wear testing of the Zn–3 Cu and Zn–3 Cu–0.2 Ti alloys in Hanks’ solution indicated that the AC samples showed the highest wear resistance, followed by the HR samples, and then the HR + CR samples, while the AC Zn–3 Cu–0.2 Ti showed the highest wear resistance.The diluted extracts of HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti at a concentration of ≤25 % exhibited noncytotoxicity. Furthermore, both the HR + CR Zn–3 Cu and Zn–3 Cu–0.2 Ti exhibited effective antibacterial properties against S. aureus.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期76-90,共15页 材料科学技术(英文版)
基金 supported financially by the Research Funds of the Wenzhou Science and Technology Bureau (Nos.ZG2019022 and 2018ZG008) support for this research by the Australian Research Council (ARC) through the Discovery Project (No.DP170102557) the Future Fellowship(No.FT160100252) support of the ARC Research Hub for Advanced Manufacturing of Medical Devices (No.IH150100024)。
  • 相关文献

同被引文献44

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部