期刊文献+

基于强化学习的机场服务机器人动态路径规划 被引量:2

Path Planning of Airport Service Robot Based on Reinforcement Learning
下载PDF
导出
摘要 针对机场场面服务机器人自动寻路的过程中,特种车辆及地勤人员等都有可能会与服务机器人产生碰撞的问题。为了提高机器人避障能力以及其知识库的丰富程度,采用基于强化学习的路径规划方法,选择Q-Learning算法对机器人的寻路学习行为进行建模,使得位于机场场面中的服务机器人可以在寻路过程中获取到最佳路径策略,完善自身及外物冲突解脱知识库的不足,最终实验仿真结果表示Q-Learning算法在机场服务机器人在机场场面中的合理性和可行性。 In the course of automatic pathfinding of airport scene service robot,special vehicles and ground crew may collide with the service robot.In order to improve the ability of the robot obstacle avoidance and the richness of its knowledge base,the path planning method based on rein⁃forcement Learning,choose the Q-Learning algorithm for robot path finding learning behavior modeling,that is located in the airport scene in the service robot can in pathfinding,for obtaining the best path to the strategy in the process of perfecting itself and the external things conflict relief the shortage of the knowledge base,finally the experimental simulation results that the Q-Learning algorithm in the airport service robot scene at the airport in the rationality and feasibility.
作者 李志龙 张建伟 LI Zhi-long;ZHANG Jian-wei(Key Laboratory of Visual Composition Graphics and Image Technology,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2021年第8期18-22,共5页 Modern Computer
基金 四川省科技计划项目(No.2020YFG0288)。
关键词 服务机器人 路径规划 Q-LEARNING Service Robot Path Planning Q-Learning
  • 相关文献

参考文献4

二级参考文献33

  • 1姜力,蔡鹤皋,刘宏.多指灵巧手的位置/力矩控制[J].控制理论与应用,2005,22(3):364-368. 被引量:7
  • 2肖本贤,齐东流,刘海霞,李善寿.动态环境中基于模糊神经网络的AGV路径规划[J].系统仿真学报,2006,18(9):2401-2404. 被引量:22
  • 3ARENA P, CRUSE H, FORTUNA L, et al. An obstacle avoidance method for a redundant manipulator controlled through a recurrent neural network[C]//Proceedings of the SPIE-The International Society for Optical Engineering, May 2-4, 2007, Maspalomas, Gran Canaria, Spain. SPIE, 2007.
  • 4IKADA K, TANAKA H, ZHANG Tongxiao, et al. On-line optimization of avoidance ability for redundant manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9-15, 2006, Beijing, China. IEEE, 2006: 592-597.
  • 5LIU Yu, LIANG Bin, SUN Kui, et ai. Research on obstacle avoidance of redundant robots based on geometric models[C]//2nd International Symposium on Systems and Control in Aerospace and Astronautics, December 10-12, 2008, Shenzhen, China. lEEE, 2008: 1-6.
  • 6NANAYAKKARA D P T, KIGUCHI K, MURAKAMI T, et al. Skillful adaptation of a 7-DOF manipulator to avoid moving obstacles in a teleoperated force control task[C]// IEEE International Symposium on Industrial Electronics Proceedings, June 12-16, 2001, Pusan, South Korea. IEEE, 2001: 1982-1987.
  • 7HUANG Jian, TODO, ISAO, et al. Control aredundant robot using visual information (avoidance control of a moving obstacle)[J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 2002, 68(10): 2 999-3 006.
  • 8LIEGEOIS A. Automatic supervisory control of the configuration and behavior of multibody mechanisms[J]. IEEE Trans. Sys. Man. Cyber., 1977, SMC-7(12): 868-871.
  • 9HSIA T C, GUO Z Y. Joint trajactory generation for redundant robots[C]//Proceedings of IEEE International Conference on Robotics and Automation, May 14-19, 1989, Scottsdale, AZ, USA. IEEE, 1989: 277-282.
  • 10Lu Y, Yi X Y, Cheng J L. A new potential field method for mobile robot path planning in the dynamic environments[J]. Asian Journal of Control, 2009, 11 (2) :214 - 225.

共引文献60

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部