期刊文献+

边端融合的终端情境自适应深度感知模型 被引量:1

End context-adaptative deep sensing model with edge-end collaboration
下载PDF
导出
摘要 研究边端融合的深度模型终端情境自适应问题.提出边端融合增强的模型压缩方法(X-ADMM),利用模型压缩技术简化模型结构,以层为粒度寻找模型最佳分割点,协同边端设备提高运行效率.为了实现模型分割的动态自适应,提出基于图的自适应深度模型手术刀算法(GADS).当模型运行情境(如存储、电量、带宽等)发生变化时,优先在邻近分割状态中快速搜索最能满足资源约束的分割点,实现快速自适应调整.实验结果表明,该模型平均在0.1 ms内实现了模型分割点的自适应调优,在保证模型精度下降不超过2.5%的情况下,运行总时延最高下降了56.65%. The end context adaptative of deep models with edge-end collaboration was analyzed.The partition and alternating direction method of multiplier method(X-ADMM)was proposed.The model compression was employed to simplify the model structure,and the model was partitioned at layer granularity to find the best partition point.The model can collaborate with edge-end devices to improve model operation efficiency.The graph based adaptive DNN surgery algorithm(GADS)was proposed in order to realize the dynamic adaptation of model partition.The model will preferentially search for the partition point that best meets resource constraints among surrounding partition states to achieve rapid adaptation when the running context(e.g.,storage,power,bandwidth)of the model changes.The experimental results showed that the model realized the adaptive tuning of model partition point in an average of 0.1 ms.The total running latency was reduced by 56.65%at the highest with no more than 2.5%accuracy loss.
作者 王虹力 郭斌 刘思聪 刘佳琪 仵允港 於志文 WANG Hong-li;GUO Bin;LIU Si-cong;LIU Jia-qi;WU Yun-gang;YU Zhi-wen(College of Computer Science,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第4期626-638,共13页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2019YFB1703901) 国家自然科学基金资助项目(61772428,61725205).
关键词 深度学习 边缘智能 模型压缩 模型分割 自适应感知 deep learning edge intelligence model compression model partition adaptive perception
  • 相关文献

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部