期刊文献+

基于宏微观纹理特征融合的路面摩擦性能预测 被引量:11

Macro and micro texture based prediction of pavement surface friction
下载PDF
导出
摘要 通过非接触式三维激光表面测试、机器学习,开展基于宏微观纹理特征融合的路面摩擦性能智能预测模型研究.来自俄克拉荷马州的45个测试站点被选取作现场测试平台.利用三维激光检测车和GripTester,分别获取行车道轮迹带路面摩擦数据、宏观纹理;利用LS-40三维激光表面分析仪获取集料表面三维微观纹理数据,测算4类微观纹理参数.利用机器学习算法,将路面摩擦与宏微观纹理特征建立联系.综合模型训练与测试,评价路面摩擦性能预测模型的准确率.模型的测试标准差为0.047,测试集R2为0.865.研究结果表明,86.5%的测试数据适用于所建立的机器学习预测模型,开发的评价指标及预测模型能够较好地预测路面摩擦性能. The pavement skid resistance prediction model was analyzed based on macro and micro texture fusion using non-contact three-dimensional laser detection and machine learning.45 pavement sites in Oklahoma were identified as the testing beds.Pavement skid resistance and surface macro-texture data were collected in parallel at highway speeds using a grip tester and three-dimensional(3D)laser dection vehicle.Four types of 3D aggregate parameters were calculated to characterize the micro-texture of aggregate surface using LS-403D laser imaging scanner.Relationship between pavement surface friction and texture was analyzed using machine learning model.The accuracy of the developed model was verified by model training and testing.The standard deviation of the model was 0.047,and the R squared value of the model was 0.865.86.5%of the testing data fit the proposed friction model.Results show that the developed texture parameters and proposed friction prediction model can predict the pavement surface friction well.
作者 战友 李强 马啸天 王郴平 邱延峻 ZHAN You;LI Qiang;MA Xiao-tian;WANG Chen-ping;QIU Yan-jun(School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;Highway Engineering Key Laboratory of Sichuan Province,Chengdu 610031,China;School of Civil and Environmental Engineering,Oklahoma State University,Stillwater 74078,USA)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第4期684-694,共11页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(52008354) 中国博士后科学基金资助项目(2019M663557) 中央高校基本科研业务费专项资金资助项目(2682020CX65).
关键词 道路工程 路面摩擦 路面宏观纹理 集料表观特性 机器学习 road engineering pavement friction pavement macro-texture aggregate surface characteristics machine learning
  • 相关文献

参考文献15

二级参考文献114

共引文献402

同被引文献458

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部