期刊文献+

氟化磷酸钒钠在钠离子电池中的应用进展

Application Progress of Sodium Vanadium Phosphate Fluoride in Sodium Ion Battery
下载PDF
导出
摘要 钠离子电池具有安全性高、钠资源丰富、成本低等独特优势,引起了人们的广泛关注。构建具有良好电化学性能的钠离子电池的关键之一就是正极材料的选取,氟化磷酸钒钠[Na_(3)V_(2)(PO_(4))_(2)F_(3)]因其结构稳定性好、离子输运快、工作电位高等特点被认为是一种很有前途的正极材料。但电导率较低,使其电化学性能较差;制备成本较高,阻碍了其大规模应用的发展。综述了在提升Na_(3)V_(2)(PO_(4))_(2)F_(3)电化学性能方面的措施,主要包括改进制备方法、离子掺杂、表面包覆等。为今后高性能Na_(3)V_(2)(PO_(4))_(2)F_(3)的合理设计提供了很好的参考。 Sodium ion batteries have attracted broad attention,due to their high safety,abundant sodium resources,low cost.One of the keys to build sodium ion batteries with good electrochemical performance is the selection of cathode materials.Sodium vanadium phosphate fluoride[Na_(3)V_(2)(PO_(4))_(2)F_(3)]is a promising candidate because of its stable structure,fast diffusion rate of sodium ions and high voltage platform.However,the low electronic conductivity leads to poor electrochemical performance,high cost of Na_(3)V_(2)(PO_(4))_(2)F_(3) hinders the development of its large-scale applications.Some strategies to improve electrochemical performance of Na_(3)V_(2)(PO_(4))_(2)F_(3) is summaried,including morphology design,ion doping,carbon coating,etc.A good reference for the rational design of high-performance Na_(3)V_(2)(PO_(4))_(2)F_(3) in the future is provided.
作者 杨菊 刘乐康 连玉东 陈阳 闫硕 姜晓蕾 YANG Ju;LIU Lekang;LIAN Yudong;CHEN Yang;YAN Shuo;JIANG Xiaolei(School of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , China)
出处 《河南化工》 CAS 2021年第4期1-4,共4页 Henan Chemical Industry
基金 国家自然科学基金(21701079) 山东省大学生创新创业训练计划项目(S202010452084)。
关键词 钠离子电池 Na_(3)V_(2)(PO_(4))_(2)F_(3) 电化学性能 sodium ion battery Na_(3)V_(2)(PO_(4))_(2)F_(3) electrochemical performance
  • 相关文献

参考文献6

二级参考文献110

  • 1Kundu D, Talaie E, Duffort V, et al. The emerging chem- istry of sodium ion batteries for electro chemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54 (11): 3431-3448.
  • 2Yabuuchi N, Kubota K, Dahbi M, et al. Research develop- ment on sodium-ion batteries[J]. Chemical Reviews, 2014, 114 (23): 11636-11682.
  • 3Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environ- mental Science, 2011, 4(9): 3680-3688.
  • 4Palomares V, Serras P, Villaluenga I, et al. Na-ion batter- ies, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.
  • 5Choi J W, Aurbach D. Promise and reality of post-lithi- um-ion batteries with high energy densities[J]. Nature Re- views Materials, 2016, 1: 16013.
  • 6Xiang X D, Zhang K, Chen J. Recent advances and pros- pects of cathode materials for sodium-ion batteries[J]. Ad- vanced Materials, 2015, 27(36): 5343-5364.
  • 7Delmas C, Braconnier J-J, Fouassier C, et al. Electrochem- ical intercalation of sodium in NaCoO2 bronzes [J]. Solid State Ionics, 1981, 3-4: 165-169.
  • 8Lei Y, Li X, Liu L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides[J]. Chemistry of Materials, 2014, 26(18): 5288-5296.
  • 9Berthelot R, Carlier D, Delmas C. Electrochemical inves- tigation of the P2-NaCoO2 phase diagram[J]. Nature Ma- terials, 2011, 10: 74-80.
  • 10Billand J, Clement R J, Armstrong A R, et al. fl-NaMnO2: A high-performance cathode for sodium-ion batteries [J]. Journal of the American Chemical Society, 2014, 136 (49): 17243-17248.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部