期刊文献+

基于卷积神经网络的绝缘子目标检测方法研究 被引量:3

Research on Insulator Target Detection Method Based on Convolutional Neural Network
下载PDF
导出
摘要 绝缘子是高压输电线路中的必备装置,为实现航拍图像中绝缘子的快速准确检测,提出基于卷积神经网络的绝缘子目标检测方法。首先介绍了基于区域候选的卷积神经网络Faster R-CNN;然后基于本实验构建了相应的数据集,描述了Faster R-CNN模型的训练过程,提出了以DarkNet作为Faster R-CNN的特征提取网络,并与ResNet对比;最后根据实验结果验证了Faster R-CNN用于绝缘子检测的可行性。ResNet和DarkNet在检测效果上都取得了不错的表现,但DarkNet作为特征提取网络在检测效率上要高于ResNet,是电力巡检在绝缘子目标检测中的有效探索。 Insulators are a necessary device in high-voltage transmission lines.In order to achieve rapid and accurate detection of insulators in aerial images,a target detection method for insulators based on convolutional neural networks is proposed.This paper introduces the convolutional neural network Faster R-CNN based on region candidates.Then built a corresponding data set based on this experiment,described the training process of the Faster R-CNN model,and proposes DarkNet as the feature extraction of Faster R-CNN Network,and compared with ResNet.Finally,according to the experimental results,the feasibility of Faster R-CNN for insulator detection is verified.Both ResNet and DarkNet have achieved good performance in detection effects,but DarkNet as a feature extraction network requires detection efficiency.
作者 王栋梁
出处 《工业控制计算机》 2021年第4期109-111,共3页 Industrial Control Computer
关键词 绝缘子目标检测 卷积神经网络 Faster R-CNN DARKNET ResNet insulator target detectionc convolutional neural network Faster R-CNN DarkNet ResNet
  • 相关文献

参考文献9

二级参考文献52

  • 1杨翠茹.基于纹理特征的绝缘子检测方法[J].电气技术,2010,11(7):46-48. 被引量:13
  • 2VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 3骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 4Dalai N, Triggs B. Histograms of oriented gradients for human detection[ C]. 2005 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition,2005, 1:886-893.
  • 5Kojima A, Sasano Y, Kise K. Object recognition from human actions using N-grams of HOG features [ J ]. ICIC Express Letters, 2012, 6(5):1155-1160.
  • 6Takahashi K, Kuriya Y, Morie T. Bicycle detection using pedaling movement by spatiotemporal Gabor filtering[ J]. International Journal of Innovative Computing, Informa- tion and Control, 2012, 8(6) :4059-4070.
  • 7Semeikina E V, Yurin D V, Krylov A. S, et al. Scale- space line curvature estimation for straight tine and circle detection[ J ]. Pattern Recognition and Image Analysis, 2012, 22(2) :360-370.
  • 8Fabian T, Erhardt B. Accurate eye centre localisation by means of gradients [ C ]. Proceedings of the International Conference on Computer Vision Theory and Application. Vilamoura, Algarve, Portugal, 2011 : 125-130.
  • 9Kawamura K, Ishii D, Watanabe H. Automatic scale de-tection for contour fragment based on difference of curva- ture [ J ]. IEICE Transactions on Information and Sys- tems, 2011, E94-D(10) : 1998-2005.
  • 10Ludwig J O, David D, Valter G, et al. Trainable classifi- er-fusion schemes: An application to pedestrian detection [ C ]. IEEE Conference on Intelligent Transportation Sys- tems, Proceedings, 2009:432-437.

共引文献400

同被引文献39

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部