期刊文献+

一种基于几何约束和直线特征的目标跟踪算法 被引量:1

An Object Tracking Algorithm Based on Multiple Geometric Constraints and Line Features
下载PDF
导出
摘要 平面目标跟踪在于如何对各种复杂环境下的运动物体进行有效迅速准确的跟踪。为提高移动视点视频中目标跟踪的稳健性,提出一种基于多重几何约束和直线特征的目标跟踪算法。该算法充分利用平面目标的边缘几何特性,结合候选直线周围像素构建特征向量,将相似度匹配最高的作为跟踪结果,再采用单应性变换实现边缘的校正。实验结果表明该算法较Ferns在遮挡和部分可见场景中更具有鲁棒性。 Planar object tracking aims to effectively,quickly and accurately track moving objects in various complex environments.In order to im⁃prove the robustness of object tracking in moving viewpoint videos,an object tracking algorithm based on multiple geometric constraints and line features is proposed.The algorithm uses the geometric features of the edge of the planar object,and combines with the pixels in the neighborhood of the candidate line to construct the feature vector.The line with the best similarity is regarded as the final result,then uses the homography transformation to realize the edge correction.The experimental results show that the proposed method is more robust than the algorithm called ferns in occlusion and partially visible scenes.
作者 刘婉君 LIU Wan-jun(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2021年第7期107-110,共4页 Modern Computer
关键词 特征提取 几何约束 直线匹配 目标跟踪 Feature Extraction Geometrical Constraint Line Matching Object Tracking
  • 相关文献

参考文献1

二级参考文献14

  • 1王建宇,陈熙霖,高文,赵德斌.背景变化鲁棒的自适应视觉跟踪目标模型[J].软件学报,2006,17(5):1001-1008. 被引量:12
  • 2Avidan S. Ensemble tracking [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
  • 3Collins R, Liu Y, Leordeanu M. Online selection of discriminative tracking features [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1631 -1643.
  • 4Grabner H, Bischof H. On-line boosting and vision [C] // Proc of IEEE Computer Vision and Pattern Recognition. New York: IEEE Computer Society, 2006:260-267.
  • 5Matthews l, Ishikawa T, Baker S. The template update problem [J]. 1EEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815.
  • 6Grabner M, Grabner H, Bischof H. Learning features for tracking[C]//Proc of IEEE Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2007:1-8.
  • 7Woodley T, Stenger B, Cipolla R. Tracking using online feature selection and a local generative model[C]//Proc of British Machine Vision Conf. Malvern, UK: British Machine Vision Association Press, 2007: 790-799.
  • 8Grabner H, Leistner C, Bisehof H. Semi-supervised on-line boosting for robust tracking [C] //Proc of European Conf on Computer Vision. Berlin: Springer, 2008:234-247.
  • 9Yu Q, Dinh T reacqulsltlon using B, Medioni G. Online tracking and co-trained generative and discriminative trackers [C]//Proc of European Conf on Computer Vision Berlin: Springer, 2008:678-691.
  • 10Tang F, Brennan S, Zhao Q, et al. Co-tracking using semi- supervised support vector machines [C] //Proc of IEEE Int Conf on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2007:1-8.

共引文献7

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部