摘要
分布式拒绝服务攻击(Distributed Denial of Service,DDoS)是软件定义网络(Software-Defined Networking,SDN)架构最主要的安全威胁,针对现有DDo S攻击检测方法存在的特征选择不全面以及检测准确率不够高两方面的不足,提出一种SDN架构下基于随机森林的DDo S攻击检测方法,通过选取流包数均值、流字节数均值、流表项增速、源IP增速和端口增速组成特征五元组,采用随机森林算法进行攻击检测。通过仿真实验证明,与决策树、K-近邻算法(K-NearestNeighbor,KNN)以及支持向量机(Support Vector Machine,SVM)算法相比,该检测方法在准确率、查准率和召回率上均有一定程度的提升。
出处
《网络安全技术与应用》
2021年第4期12-14,共3页
Network Security Technology & Application