期刊文献+

DNA甲基化差异模式识别方法综述

Survey of DNA differentially methylated patterns identification
下载PDF
导出
摘要 目前,微阵列芯片技术和重亚硫酸氢盐测序技术贡献了大量DNA甲基化实验数据,基于不同数据产生了众多识别差异甲基化位点及差异甲基化区域的方法。为了对DNA甲基化差异模式识别方法进行梳理,首先介绍了DNA甲基化研究现状,包括DNA甲基化检测方法和数据类型,以及两种DNA甲基化差异模式;接着详细阐述了芯片数据的差异甲基化位点和差异甲基化区域的识别方法,并介绍了基于八种不同算法原理的测序数据的差异甲基化模式识别方法,重点阐述了各种算法的原理、应用场景以及算法的优点和局限性;最后指出了现阶段DNA甲基化差异模式识别存在的问题和未来可能的发展趋势。 At present,microarray chip technology and sodium bisulfite sequencing technology have contributed a large amount of DNA methylation data.Based on different data type,there have been many methods to identify differentially methylated locis and regions.To sort out the methods of differentially methylated pattern identification,this paper firstly introduced the research status of DNA methylation,including detection methods and data types of DNA methylation,as well as two kinds of differentially methylated patterns.Then the paper elaborated on the identification methods of differentially methylated locis and regions on the chip data,and the identification methods of differentially methylated patterns on the sequencing data based on eight different algorithm principles.This paper focused on the principles,application scenarios,advantages and limitations of these algorithms.Finally,the paper pointed out the problems of differentially methylated pattern identification and possible future development trends.
作者 赵倩 张雪 张彦 林正奎 孙野青 Zhao Qian;Zhang Xue;Zhang Yan;Lin Zhengkui;Sun Yeqing(College of Information Science&Technology,Dalian Maritime University,Dalian Liaoning 116026,China;College of Environmental Science&Engineering,Dalian Maritime University,Dalian Liaoning 116026,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第5期1281-1286,1293,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(31770918) 中国科学院空间科学战略性先导科技专项(XDA04020202-12,XDA04020412)。
关键词 DNA甲基化 甲基化差异模式 差异甲基化位点 差异甲基化区域 识别 DNA methylation differentially methylated pattern differentially methylated loci differentially methylated region identification
  • 相关文献

参考文献1

二级参考文献9

  • 1JAFFF A E, MURAKAMI P, LEE H, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies[J].International journal of epidemiology, 2012, 41(1) : 200-209.
  • 2SLIEKER R C, BOSS D, GOEMAN J J, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array[J]. Epigeneties & Chromatin, 2013, 6(1) : 1-12.
  • 3ONG M L, HOLBROOK J D. Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways[J]. Aging Cell, 2014, 13(1): 142-155.
  • 4ZHANG Y, ZHANG J. Identification of functionally methylated regions based on discriminant analysis through integrating methylation and gene expression data[J]. Molecular BioSystems, 2015, 11 (7).. 1786-1793.
  • 5ALISCH R S, BARWICK B G, CHOPRA P, et al. Age-associated DNA methylation in pediatric populations[J]. Genome research, 2012, 22(4).. 623-632.
  • 6HEYN H, LI N, FERREIRA H J, et al. Distinct DNA methylomes of newborns and eentenarians[J]. Proceedings of the National Academy of Sciences, 2012, 109(26): 10522-10527.
  • 7TROYANSKAYA O, CANTOR M, SHERLOCK G, et al. Missing value estimation methods for DNA mieroarrays[J]. Bioinformatics, 2001, 17(6) : 520-525.
  • 8BOLSHAKOVA N, AZUAJE F. Cluster validation techniques for genome expression data[J]. Signal processing, 2003, 83(4): 825-833.
  • 9杨昆,张彦斌,戴胜冬,王路路,戴国骏,胡三清.DNA甲基化的重要特征[J].生物物理学报,2012,28(11):910-922. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部