Geometrical reconstruction of fluorescence events observed by the LHAASO experiment
被引量:1
摘要
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.
基金
National Natural Science Foundation of China(11903005,11563004,11475190)。
共引文献10
-
1马帅康,张子豪,高启.LHAASO重要发现开启“超高能γ天文学”时代[J].科学技术创新,2021(30):160-162.
-
2杨睿智.LHAASO与宇宙线起源[J].中国科学:物理学、力学、天文学,2022,52(2):1-14. 被引量:1
-
3石京燕,黄秋兰,汪璐,李海波,杜然,姜晓巍,胡庆宝,郑伟,闫晓飞,张玄同.国家高能物理科学数据中心分布式数据处理平台[J].数据与计算发展前沿,2022,4(1):97-112. 被引量:4
-
4宋海声,孙文健,杨海波,赵承心,李承飞,彭鹏,李先勤.基于VATA160的前端读出电子学设计[J].现代电子技术,2022,45(6):39-43.
-
5F.Aharonian,Q.An,Axikegu,L.X.Bai,Y.X.Bai,Y.W.Bao,D.Bastieri,X.J.Bi,Y.J.Bi,H.Cai,J.T.Cai,Z.Cao,Z.Cao,J.Chang,J.F.Chang,X.C.Chang,B.M.Chen,J.Chen,L.Chen,L.Chen,L.Chen,M.J.Chen,M.L.Chen,Q.H.Chen,S.H.Chen,S.Z.Chen,T.L.Chen,X.L.Chen,Y.Chen,N.Cheng,Y.D.Cheng,S.W.Cui,X.H.Cui,Y.D.Cui,B.Z.Dai,H.L.Dai,Z.G.Dai,Danzengluobu,D.della Volpe,B.D’Ettorre Piazzoli,X.J.Dong,J.H.Fan,Y.Z.Fan,Z.X.Fan,J.Fang,K.Fang,C.F.Feng,L.Feng,S.H.Feng,Y.L.Feng,B.Gao,C.D.Gao,Q.Gao,W.Gao,M.M.Ge,L.S.Geng,G.H.Gong,Q.B.Gou,M.H.Gu,J.G.Guo,X.L.Guo,Y.Q.Guo,Y.Y.Guo,Y.A.Han,H.H.He,H.N.He,J.C.He,S.L.He,X.B.He,Y.He,M.Heller,Y.K.Hor,C.Hou,X.Hou,H.B.Hu,S.Hu,S.C.Hu,X.J.Hu,D.H.Huang,Q.L.Huang,W.H.Huang,X.T.Huang,Y.Huang,Z.C.Huang,F.Ji,X.L.Ji,H.Y.Jia,K.Jiang,Z.J.Jiang,C.Jin,D.Kuleshov,K.Levochkin,B.B.Li,C.Li,C.Li,F.Li,H.B.Li,H.C.Li,H.Y.Li,J.Li,K.Li,W.L.Li,X.Li,X.Li,X.R.Li,Y.Li,Y.Z.Li,Z.Li,Z.Li,E.W.Liang,Y.F.Liang,S.J.Lin,B.Liu,C.Liu,D.Liu,H.Liu,H.D.Liu,J.Liu,J.L.Liu,J.S.Liu,J.Y.Liu,M.Y.Liu,R.Y.Liu,S.M.Liu,W.Liu,Y.N.Liu,Z.X.Liu,W.J.Long,R.Lu,H.K.Lv,B.Q.Ma,L.L.Ma,X.H.Ma,J.R.Mao,A.Masood,W.Mitthumsiri,T.Montaruli,Y.C.Nan,B.Y.Pang,P.Pattarakijwanich,Z.Y.Pei,M.Y.Qi,D.Ruffolo,V.Rulev,A.Sáiz,L.Shao,O.Shchegolev,X.D.Sheng,J.R.Shi,H.C.Song,Yu.V.Stenkin,V.Stepanov,Q.N.Sun,X.N.Sun,Z.B.Sun,P.H.T.Tam,Z.B.Tang,W.W.Tian,B.D.Wang,C.Wang,H.Wang,H.G.Wang,J.C.Wang,J.S.Wang,L.P.Wang,L.Y.Wang,R.N.Wang,W.Wang,W.Wang,X.G.Wang,X.J.Wang,X.Y.Wang,Y.D.Wang,Y.J.Wang,Y.P.Wang,Z.Wang,Z.Wang,Z.H.Wang,Z.X.Wang,D.M.Wei,J.J.Wei,Y.J.Wei,T.Wen,C.Y.Wu,H.R.Wu,S.Wu,W.X.Wu,X.F.Wu,S.Q.Xi,J.Xia,J.J.Xia,G.M.Xiang,G.Xiao,H.B.Xiao,G.G.Xin,Y.L.Xin,Y.Xing,D.L.Xu,R.X.Xu,L.Xue,D.H.Yan,C.W.Yang,F.F.Yang,J.Y.Yang,L.L.Yang,M.J.Yang,R.Z.Yang,S.B.Yang,Y.H.Yao,Z.G.Yao,Y.M.Ye,L.Q.Yin,N.Yin,X.H.You,Z.Y.You,Y.H.Yu,Q.Yuan,H.D.Zeng,T.X.Zeng,W.Zeng,Z.K.Zeng,M.Zha,X.X.Zhai,B.B.Zhang,H.M.Zhang,H.Y.Zhang,J.L.Zhang,J.W.Zhang,L.Zhang,L.Zhang,L.X.Zhang,P.F.Zhang,P.P.Zhang,R.Zhang,S.R.Zhang,S.S.Zhang,X.Zhang,X.P.Zhang,Y.Zhang,Y.Zhang,Y.F.Zhang,Y.L.Zhang,B.Zhao,J.Zhao,L.Zhao,L.Z.Zhao,S.P.Zhao,F.Zheng,Y.Zheng,B.Zhou,H.Zhou,J.N.Zhou,P.Zhou,R.Zhou,X.X.Zhou,C.G.Zhu,F.R.Zhu,H.Zhu,K.J.Zhu,X.Zuo.A dynamic range extension system for LHAASOWCDA-1[J].Radiation Detection Technology and Methods,2021,5(4):520-530.
-
6曹臻.LHAASO在宇宙线物理中的里程碑意义[J].科学通报,2022,67(14):1558-1566. 被引量:1
-
7Rui He,Xiao‑Yang Niu,Yi Wang,Hong‑Wei Liang,Hong‑Bang Liu,Ye Tian,Hong‑Lin Zhang,Chao‑Jie Zou,Zhi‑Yi Liu,Yun‑Long Zhang,Hai‑Bo Yang,Ju Huang,Hong‑Kai Wang,Wei‑Jia Han,Bei Cao,Gang Chen,Cong Dai,Li‑Min Duan,Rui‑Rui Fan,Fang‑Fa Fu,Jian‑Hua Guo,Dong Han,Wei Jiang,Xian‑Qin Li,Xin Li,Zhuo‑Dai Li,Yu‑Tie Liang,Shun Liao,De‑Xu Lin,Cheng‑Ming Liu,Guo‑Rui Liu,Jun‑Tao Liu,Ze Long,Meng‑Chen Niu,Hao Qiu,Hu Ran,Xiang‑Ming Sun,Bo‑Tan Wang,Jia Wang,Jin‑Xiang Wang,Qi‑Lin Wang,Yong‑Sheng Wang,Xiao‑Chuan Xia,Hao‑Qing Xie,He‑Run Yang,Hong Yin,Hong Yuan,Chun‑Hui Zhang,Rui‑Guang Zhao,Ran Zheng,Cheng‑Xin Zhao.Advances in nuclear detection and readout techniques[J].Nuclear Science and Techniques,2023,34(12):281-358. 被引量:4
-
8LHAASO Collaboration,Zhen Cao,Chuandong Gao,Cong Li,Ruo-Yu Liu,Ruizhi Yang.由超拍电子伏特加速器产生的超高能伽马射线气泡[J].Science Bulletin,2024,69(4):449-457. 被引量:2
-
9Tao Wen,Songzhan Chen,Benzhong Dai.The Influence of the Sun and Moon on the Observation of Very High Energy Gamma-ray Sources Using EAS Arrays[J].Research in Astronomy and Astrophysics,2024,24(6):245-252.
-
10刘佳,曹臻.揭秘宇宙线起源:LHAASO的使命、挑战与展望[J].物理,2024,53(4):237-244.
同被引文献7
-
1逯红杰,金文,段颖.高低温箱运行及故障分析探讨[J].西安航空技术高等专科学校学报,2006,24(5):36-38. 被引量:1
-
2江洋,杨俊峰,宋克柱.基于RS-485长距离数据传输系统设计[J].核电子学与探测技术,2013,33(4):404-406. 被引量:3
-
3曹臻,陈明君,陈松战,胡红波,刘成,刘烨,马玲玲,马欣华,盛祥东,吴含荣,肖刚,姚志国,尹丽巧,查敏,张寿山(代表LHAASO合作组).高海拔宇宙线观测站LHAASO概况[J].天文学报,2019,60(3):1-16. 被引量:20
-
4张进文,周荣,张寿山,李尧,熊浩,胡刚菱,杨朝文.LHAASO-WFCTA读出电子学系统架构设计[J].四川大学学报(自然科学版),2020,57(6):1125-1130. 被引量:1
-
5李新,陈龙,耿利斯,刘虎,孙秦宁,王阳,夏君集,祝凤荣,张勇.成像激光雷达标定系统中三维升降转台的性能研究[J].天文研究与技术,2022,19(3):244-252. 被引量:3
-
6胡潇飞,魏临风,程琦,吴星麒,倪健.青藏高原地区气候图解数据集[J].植物生态学报,2022,46(4):484-492. 被引量:4
-
7王昌贝,左雄,贾焕玉,庞彬宇,王辉.LHAASO缪子探测器电荷优化测量研究[J].天文研究与技术,2023,20(3):258-266. 被引量:2
-
1代小佩.“最牛”望远镜建设遇阻天文学家与原住民共抢“怪山”[J].现代声像档案,2020,22(3):40-41.
-
2Qing-Hong Cao,Ran Ding,Qian-Fei Xiang.Searching for sub-MeV boosted dark matter from xenon electron direct detection[J].Chinese Physics C,2021,45(4):404-415.
-
3Xu-Dong Sun,Ben-Zhong Dai.Observational constraints on dark matter decaying via gravity portals[J].Chinese Physics C,2020,44(12):215-225.
-
4F.Aharonian,Q.An,Axikegu,L.X.Bai,Y.X.Bai,Y.W.Bao,D.Bastieri,X.J.Bi,Y.J.Bi,H.Cai,J.T.Cai,Z.Cao,J.Chang,J.F.Chang,X.C.Chang,B.M.Chen,J.Chen,L.Chen,M.J.Chen,M.L.Chen,Q.H.Chen,S.H.Chen,S.Z.Chen,T.L.Chen,X.L.Chen,Y.Chen,N.Cheng,Y.D.Cheng,S.W.Cui,X.H.Cui,Y.D.Cui,B.Z.Dai,H.L.Dai,Z.G.Dai,D.della Volpe,B.D'Ettorre Piazzoli,X.J.Dong,J.H.Fan,Y.Z.Fan,Z.X.Fan,J.Fang,K.Fang,C.F.Feng,L.Feng,S.H.Feng,Y.L.Feng,B.Gao,C.D.Gao,Q.Gao,W.Gao,M.M.Ge,L.S.Geng,G.H.Gong,Q.B.Gou,M.H.Gu,J.G.Guo,X.L.Guo,Y.Q.Guo,Y.Y.Guo,Y.A.Han,H.H.He,H.N.He,J.C.He,S.L.He,X.B.He,Y.He,M.Heller,Y.K.Hor,C.Hou,X.Hou,H.B.Hu,S.Hu,S.C.Hu,X.J.Hu,D.H.Huang,Q.L.Huang,W.H.Huang,X.T.Huang,Z.C.Huang,F.Ji,X.L.Ji,H.Y.Jia,K.Jiang,Z.J.Jiang,C.Jin,D.Kuleshov,K.Levochkin,B.B.Li,C.Li,F.Li,H.B.Li,H.C.Li,H.Y.Li,J.Li,K.Li,W.L.Li,X.Li,X.R.Li,Y.Li,Y.Z.Li,Z.Li,E.W.Liang,Y.F.Liang,S.J.Lin,B.Liu,C.Liu,D.Liu,H.Liu,H.D.Liu,J.Liu,J.L.Liu,J.S.Liu,J.Y.Liu,M.Y.Liu,R.Y.Liu,S.M.Liu,W.Liu,Y.N.Liu,Z.X.Liu,W.J.Long,R.Lu,H.K.Lv,B.Q.Ma,L.L.Ma,X.H.Ma,J.R.Mao,A.Masood,W.Mitthumsiri,T.Montaruli,Y.C.Nan,B.Y.Pang,P.Pattarakijwanich,Z.Y.Pei,M.Y.Qi,D.Ruffolo,V.Rulev,A.Sáiz,L.Shao,O.Shchegolev,X.D.Sheng,J.R.Shi,H.C.Song,Yu.V.Stenkin,V.Stepanov,Q.N.Sun,X.N.Sun,Z.B.Sun,P.H.T.Tam,Z.B.Tang,W.W.Tian,B.D.Wang,C.Wang,H.Wang,H.G.Wang,J.C.Wang,J.S.Wang,L.P.Wang,L.Y.Wang,R.N.Wang,W.Wang,X.G.Wang,X.J.Wang,X.Y.Wang,Y.D.Wang,Y.J.Wang,Y.P.Wang,Z.Wang,Z.H.Wang,Z.X.Wang,D.M.Wei,J.J.Wei,Y.J.Wei,T.Wen,C.Y.Wu,H.R.Wu,S.Wu,W.X.Wu,X.F.Wu,S.Q.Xi,J.Xia,J.J.Xia,G.M.Xiang,G.Xiao,H.B.Xiao,G.G.Xin,Y.L.Xin,Y.Xing,D.L.Xu,R.X.Xu,L.Xue,D.H.Yan,C.W.Yang,F.F.Yang,J.Y.Yang,L.L.Yang,M.J.Yang,R.Z.Yang,S.B.Yang,Y.H.Yao,Z.G.Yao,Y.M.Ye,L.Q.Yin,N.Yin,X.H.You,Z.Y.You,Y.H.Yu,Q.Yuan,H.D.Zeng,T.X.Zeng,W.Zeng,Z.K.Zeng,M.Zha,X.X.Zhai,B.B.Zhang,H.M.Zhang,H.Y.Zhang,J.L.Zhang,J.W.Zhang,L.Zhang,L.X.Zhang,P.F.Zhang,P.P.Zhang,R.Zhang,S.R.Zhang,S.S.Zhang,X.Zhang,X.P.Zhang,Y.Zhang,Y.F.Zhang,Y.L.Zhang,B.Zhao,J.Zhao,L.Zhao,L.Z.Zhao,S.P.Zhao,F.Zheng,Y.Zheng,B.Zhou,H.Zhou,J.N.Zhou,P.Zhou,R.Zhou,X.X.Zhou,C.G.Zhu,F.R.Zhu,H.Zhu,K.J.Zhu,X.Zuo.Observation of the Crab Nebula with LHAASO-KM2A−a performance study[J].Chinese Physics C,2021,45(2):518-530. 被引量:10
-
5Jia-Shu Niu.Origin of hardening in spectra of cosmic ray nuclei at a few hundred GeV using AMS-02 data[J].Chinese Physics C,2021,45(4):25-32.
-
6Dome A in Antarctica Proved the Best Site for Optical Astronomical Observation on Earth[J].Bulletin of the Chinese Academy of Sciences,2020,34(3):173-174.
-
7Jianyong Zhang,Xiaohu Mo,Xiao Cai.Study of Annealing the Damaged HPGe Detector[J].World Journal of Nuclear Science and Technology,2021,11(2):100-108.
-
8Si-Yuan Huang,Ce Yu,Chao Sun,Yi Hu,Zhaohui Shang,Bin Ma,Ming Che,Xiao-Xiao Lu.NBFTP: a dedicated data transfer system for remote astronomical observation at Dome A[J].Research in Astronomy and Astrophysics,2021,21(3):34-42.
-
9Ruixiang Wang,Pengyang Zhang,Yucheng Wang,Yuesheng Wang,Karim Zaghib,Zhiyou Zhou.ZIF-derived Co-N-C ORR catalyst with high performance in proton exchange membrane fuel cells[J].Progress in Natural Science:Materials International,2020,30(6):855-860. 被引量:6
-
10Li Wang,Qing Liu,Yunbo Zhang.Quantum dynamics on a lossy non-Hermitian lattice[J].Chinese Physics B,2021,30(2):64-70.