期刊文献+

海杂波背景下漂浮小目标检测新算法 被引量:1

A New Algorithm for Floating Small Target Detection Under Sea Clutter Background
下载PDF
导出
摘要 针对海杂波背景下漂浮小目标检测问题,提出一种海杂波背景下漂浮小目标检测新算法。利用互补自适应噪声集合经验模式分解-鲁棒性独立主成分分析与Savitzky-Golay滤波算法(EEMDCAN-Robust ICA&SG)联合去噪算法处理海面回波信号,对重构信号用改进蝙蝠算法优化KELM模型做混沌预测。实验结果表明:新算法在不破坏海杂波混沌特性的前提下,极大地抑制了海杂波。在同等条件下,与传统混沌预测算法相比,训练时间短、预测精度高。新算法的检测性能稳定,低信杂比下的检测性能显著优于传统算法,证明新算法能快速实现对漂浮小目标的有效检测。 Aiming at the problem of floating small target detection under sea clutter background a new floating small target detection algorithm EEMDCAN-Robust ICA&SG is proposed.The denoising algorithm combines EEMDCAN Robust ICA with Savitzky-Golay filtering algorithm to process sea echo signal and the improved bat algorithm is used to optimize KELM model for chaotic prediction of reconstructed signal.The experimental results show that:1)The new algorithm greatly suppresses the sea clutter without destroying the chaotic characteristics of the sea clutter;2)Under the same conditions the training time is shorter and the prediction accuracy is higher compared with that of the traditional chaos prediction algorithms;and 3)The detection performance of the new algorithm is stable and the detection performance under low signal to clutter ratio is significantly superior to that of the traditional algorithm.It has been proved that the new algorithm can detect small floating targets quickly and effectively.
作者 唐建军 梁浩 朱张勤 金林 TANG Jianjun;LIANG Hao;ZHU Zhangqin;JIN Lin(Nanjing Institute of Electronic Technology,Nanjing 210039,China)
出处 《电光与控制》 CSCD 北大核心 2021年第5期51-55,84,共6页 Electronics Optics & Control
关键词 目标检测 海杂波 漂浮小目标 EEMDCAN Robust ICA 改进蝙蝠算法 KELM target detection sea clutter floating small target EEMDCAN Robust ICA improved bat algorithm KELM
  • 相关文献

参考文献1

二级参考文献17

  • 1Huang N E, Shen Z, Long S R, et al: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineerin9 Sciences, 1998, 454(1971): 903-995.
  • 2Yang Z, Ling B W K, and Bingham C. Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum[J]. Measurement, 2013, 46(8): 2481-2491.
  • 3Yang Z, Ling B W K, and Bingham C. Fault detection and signal reconstruction for increasing operational availability of industrial gas turbines[J]. Measurement, 2013, 46(6):1938-1946.
  • 4Li H, Wang X, Chen L, et al: Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope[J]. Circuits, Systems, and Signal Processing, 2014, 33(4): 1261-1276.
  • 5Lin D C, Guo Z L, An F P, et al: Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression[J]. Mechanical Systems and Signal Processing, 2012, 31: 13-28.
  • 6Shen W C, Chen Y H, and Wu A Y A. Low-complexity sinusoidal-assisted EMD (SAEMD) algorithms for solving mode-mixing problems in HHT[J]. Digital Signal Processing, 2014(24): 170-186.
  • 7Zheng J, Cheng J, and Yang Y. Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing[J]. Signal Processing, 2014(96): 362-374.
  • 8Wu Z and Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
  • 9Yeh J R, Shieh J S, and Huang N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
  • 10Tortes M E, Colominas M A, Schlotthauer G, et al: A complete ensemble empirical mode decomposition with adaptive noise[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech, 2011: 4144-4147.

共引文献16

同被引文献58

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部