期刊文献+

基于卷积神经网络的三电平断路故障诊断方法研究 被引量:1

Research on Three-level Open Circuit Fault Diagnosis Method Based on Convolutional Neural Network
下载PDF
导出
摘要 逆变器作为一种电力变换的装置,具有性能优越、使用方便等优点,在生产中不可或缺。具有大功率的三电平逆变器核心元器件发生故障时,仅仅依靠人工检查很难直接判断出故障类型,存在一定的安全隐患,而且因为三电平的故障类型差异性很大,造成数据集分布不平衡的问题。针对现有数据集故障样本少、数据集不平衡的问题,本文应用合成少数类过采样技术处理数据集,并用卷积神经网络模型对三电平逆变器进行故障诊断。实验结果表明,本文使用的卷积神经网络的故障诊断准确率达96%。 As a kind of power conversion device,inverter has the advantages of superior performance and convenient use,which is indispensable in production.When the core components of high-power three-level inverter fail,it is dif⁃ficult to directly determine the fault type only by manual inspection,and there are certain security risks.Moreover,because the fault types of three-level inverter are very different,the data set distribution is unbalanced.In order to solve the problem of few fault samples and unbalanced data sets in the existing data sets,this paper applied SMOTE to deal with the data sets,and used the convolution neural network model to diagnose the fault of three-level inverter.The experimental results show that the fault diagnosis accuracy of the convolutional neural network is 96%.
作者 黄智飞 HUANG Zhifei(Shandong University of Technology,Zibo Shandong 255000)
机构地区 山东理工大学
出处 《河南科技》 2021年第5期13-15,共3页 Henan Science and Technology
关键词 逆变器 卷积神经网络 SMOTE inverter convolutional neural network SMOTE
  • 相关文献

参考文献5

二级参考文献32

共引文献1788

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部