期刊文献+

基于神经网络的无线信道场景识别 被引量:1

Wireless channel scenario recognition based on neural network
下载PDF
导出
摘要 无线信道场景识别对于无线资源调度和系统性能的优化等具有重要意义.文中基于QuaDriGa平台研究了反向传播神经网络(back propagation neural network,BPNN)和卷积神经网络(convolutional neural networks,CNN)在无线信道场景识别中的应用.首先,利用QuaDriGa生成不同场景下的信道冲激响应(channel impulse response,CIR),并提取时延扩展、角度扩展等信道参数.然后,对于BPNN,直接利用其对不同场景的参数进行训练;对于CNN,需要经过"抽头移动、数量级微调、自相关"等操作将一维的CIR转化为二维图像再进行训练.最后,计算识别准确率并利用K折交叉验证该两种模型的泛化能力.结果表明,CNN比BPNN识别精度高,但BPNN识别效率更高,二者均可用于未来信道场景的智能感知和识别. Wireless channel scene identification is of great significance for wireless resource scheduling and system performance optimization.Based on the QuaDriGa platform,this paper studies the application of back propagation neural network(BPNN)and convolutional neural networks(CNN)in wireless channel scene recognition.Firstly,based on QuaDriGa,the channel impulse response(CIR)in different scenarios is generated,and channel parameters such as delay spread and angle spread are extracted.In this paper,BPNN is used to train the parameters of different scenes.For CNN,it is necessary to convert the one-dimensional CIR into a two-dimensional image and then train it through operations such as"tap movement,order of magnitude fine-tuning,and autocorrelation".Finally,the recognition accuracy is calculated and the K-fold cross-validation is used to verify the generalization ability of the two models.The results show that CNN has higher recognition accuracy than BPNN,but BPNN has higher recognition efficiency.Both can be used for intelligent sensing and recognition of future communication network scenarios.
作者 樊圆圆 刘留 张嘉驰 李慧婷 周涛 唐盼 FAN Yuanyuan;LIU Liu;ZHANG Jiachi;LI Huiting;ZHOU Tao;TANG Pan(Institute of Broadband Wireless Mobile Communications,Beijing Jiaotong University,Beijing 100044,China;Key Lab of Universal Wireless Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《电波科学学报》 CSCD 北大核心 2021年第2期208-215,共8页 Chinese Journal of Radio Science
基金 国家重点研发计划(2018YFE0205501) 北京市自然科学基金-海淀原始创新联合基金(L172030) 国家自然科学基金重点项目(61931001)。
关键词 信道场景识别 信道仿真 QuaDriGa 反向传播神经网络(BPNN) 卷积神经网络(CNN) channel classification channel simulation QuadDriGa platform back propagation neural network convolutional neural network
  • 相关文献

参考文献4

二级参考文献75

  • 1Masse J P. Wi-Fi at 320 km/h. http://www. Railway gazette.com/ news/single-view/view/wi-fi-at-320-kmh.html.
  • 2新干线“N700系”提供无线LAN服务.http://cn.j-cast.com/2008/07/04023014.html.
  • 3RappaportTS.周文安,付秀花译.无线通信原理与应用(第二版).北京:电子工业出版社,2008.
  • 4王欣.高速移动环境下OFDM系统关键技术的研究.北京:北京交通大学.2006.
  • 5Yu Y C,Okada M,Yamamoto M. Dipole array antenna assisted doppler spread compensator with MRC diversity for ISDB-T receiver.IEICE Transactions on Communications, 2007 (5):1214- 1221.
  • 6Liu L, Tao C, Qiu J H. A novel comb-pilot transform domain frequency diversity channel estimation for OFDM system. Radioengineering,2009,18 (4):497-502.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 8HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 10HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.

共引文献589

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部