期刊文献+

基于深度学习的脸部年龄预测算法 被引量:1

Facial Age Prediction Algorithm Based on Deep Learning
下载PDF
导出
摘要 为提高脸部年龄预测的准确性,在深度学习的基础上提出一种可有效预测脸部年龄的算法。通过对人脸图像进行预处理,获取左眼、右眼、鼻子和嘴巴四个部分的局部图像,利用迁移TensorFlow深度学习库中的Inception V4模型,提取脸部图像四个部分的多尺度局部特征,并将提取的局部特征使用串联方式相连接以得到融合特征,再将不同年龄的融合特征输入双向长短期记忆中,以学习不同年龄融合特征间的相关性,进而完成年龄预测。在公开数据集FG-NET和MORPH上的实验结果表明,该算法通过利用脸部多尺度融合特征和不同年龄融合特征间的相关性,能够显著提高年龄预测的准确性和鲁棒性。 In order to improve the accuracy of facial age prediction,this paper proposes an algorithm for effective age estimation based on a deep learning.Based on the preprocessed face images,the images of the parts around the left eye,right eye,nose and mouth are obtained.Then by using the Inception V4 model in the deep learning database of TensorFlow,the multiscale local features of these four face parts are extracted and connected in series to obtain the fused features.The fused features of different ages are input into bidirectional Long Short-Time Memory(LSTM)to learn the correlation between the fused features of different ages,completing the age prediction.The experimental results on the open data sets FG NET and MORPH show that the algorithm can significantly improve the accuracy and robustness of age prediction by using the correlation between the fused multiscale facial features and the fused features of different ages.
作者 张亮亮 张明艳 程凡永 周鹏 ZHANG Liangliang;ZHANG Mingyan;CHENG Fanyong;ZHOU Peng(Anhui Key Laboratory of Electric Drive and Control,Anhui Polytechnic University,Wuhu,Anhui 241000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第5期267-272,共6页 Computer Engineering
基金 国家自然科学基金(61976005) 安徽省教育厅重点项目(KJ2019A0149) 安徽高校协同创新项目(GXXT-2020-070) 安徽工程大学-鸠江区产业协同创新项目(2021cyxta2) 安徽工程大学科研项目(Xjky02201903,2017YQQ010,2017YQQ011)。
关键词 深度学习 卷积神经网络 递归神经网络 脸部图像 年龄预测 deep learning Convolutional Neural Network(CNN) Recursive Neural Network(RNN) facial image age prediction
  • 相关文献

参考文献4

二级参考文献64

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 2王俊艳,苏光大,林行刚.人脸图像年龄估计[J].清华大学学报(自然科学版),2007,47(4):526-529. 被引量:6
  • 3Ramanathana N, Chellapa R, Biswas S. Computational methods for modeling facial aging: a survey [ J ]. Journal of Visual Language and Computing, 2009, 20 ( 3 ) : 131-144.
  • 4Kwon Y H, Lobo N. Age classification from facial images [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle, USA : IEEE Computer Society Press, 1994 : 762-767.
  • 5Lanitis A, Taylor C, Cootes T. Toward automatic simulation of aging effects on face images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 442-455.
  • 6Zhuang X D, Zhou X, Hasegawa-Johnson M, et al. Face age estimation using patch-based hidden markov model supervectors [C]// Proceedings of 19 th International Conference on Pattern Recognition, Tampa : IEEE Press, 2008 : 1-4.
  • 7Fu Y, Huang T S. Human age estimation with regression on discriminative aging manifold [ J ]. IEEE Transactions on Multimedia, 2008, 10(4): 578-584.
  • 8Guo G D, Fu Y, Dyer C, et al. Image-based human age estimation by manifold learning and locally adjusted robust regression [J]. IEEE Transactions on Image Processing, 2008, 17(7) :1178-1188.
  • 9Guo G D, Mu G, Fu Y, Huang T S. Human age estimation using bio-inspired features [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami : IEEE Computer Society Press, 2009 : 112-119.
  • 10Fu Y, Guo G D, Huang T S. Age synthesis and estimation via faces: A survey [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32( 11 ) : 1955 - 1976.

共引文献50

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部