期刊文献+

基于深度学习的大肠埃希菌和志贺菌拉曼光谱鉴别模型

Identification model of Raman spectra for Escherichia coli and Shigella species based on deep learning
下载PDF
导出
摘要 目的探讨表面增强拉曼散射(surface-enhanced Raman scattering,SERS)联合深度学习在大肠埃希菌与志贺菌鉴别中的价值。方法收集从徐州医科大学附属医院临床分离的大肠埃希菌及志贺菌各10株,建立上述细菌的SERS光谱数据集,应用深度学习分支卷积神经网络(convolutional neural network,CNN)构建2种细菌的分类模型。结果 SERS联合深度学习可以准确区分高度相似的大肠埃希菌和志贺菌,鉴别精确度为100%。与传统细菌鉴定方法相比,鉴定周期大大缩短。结论 SERS联合深度学习在大肠埃希菌和志贺菌的快速鉴别领域具有极大的应用价值和潜力。 Objective To explore the use of surface-enhanced Raman scattering(SERS)combined with deep learning for identification of Escherichia coli and Shigella species.Methods A total of 10 Escherichia coli strains and 10 Shigella strains were collected from the Affiliated Hospital of Xuzhou Medical University to establish a Raman spectroscopy database.Through the convolutional neural network(CNN),the classification models of the two bacteria were constructed.Results In the current study,highly similar Escherichia coli and Shigella species were precisely distinguished through SERS combined with deep learning,with an identification accuracy of 100%.Compared with the traditional bacterial identification methods,the identification period was significantly shortened.Conclusions SERS combined with deep learning is greatly useful in rapid identification of Escherichia coli and Shigella species.
作者 陈欣 顾兵 李洪春 CHEN Xin;GU Bing;LI Hongchun(School of Medical Technology,Xuzhou Medical University,Xuzhou,Jiangsu 221004,China;Department of Laboratory Medicine,the Affiliated Hospital of Xuzhou Medical University,Xuzhou,Jiangsu 221002)
出处 《徐州医科大学学报》 CAS 2021年第4期241-246,共6页 Journal of Xuzhou Medical University
基金 国家自然科学基金(81871734) 国家自然科学基金(82072380)。
关键词 大肠埃希菌 志贺菌 深度学习 卷积神经网络 表面增强拉曼散射 Escherichia coli Shigella species deep learning convolutional neural network surface-enhanced Raman scattering
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部