期刊文献+

基于初值更新的水下纯方位短时目标跟踪

Underwater Bearings-Only Short Time Target Tracking Based on Initial Value Updating
下载PDF
导出
摘要 水下被动单站纯方位目标跟踪具有布局简单、隐蔽性强的优点,但所使用的滤波方法均存在对初值选取敏感的问题,且实际工程中会遇到目标速度快、观测时间短、量测数据少的情况,使这一问题更加凸显。针对这一情况,文中研究了初值对滤波产生影响的原因和方式,提出了一种基于初值更新的扩展卡尔曼滤波改进方法,通过后向迭代对初值重新估计并不断更新,逐步降低初值误差对滤波结果的影响。仿真结果表明,该方法可减少滤波器对初值选取的依赖,降低最终的估计误差。 Underwater passive bearings-only target tracking by single-observer has the advantages of simple layout and strong concealment.However,the filtering methods are sensitive to the initial value,and the actual engineering will encounter the situation of fast target speed,short observation time and less measurement data,which makes this problem significantly prominent.In view of this situation,this paper studies the causes and the effect of initial values on filtering,and presents an improved method of extended Kalman filter based on initial value update.By re-estimating and updating the initial values through backward iteration,the effect of the initial error on the filtering result is gradually reduced.The simulation results show that this method can reduce the dependence of the filter on initial value selection and the final estimation error.
作者 郑艺 王明洲 ZHENG Yi;WANG Ming-zhou(The 705 Research Institute,China State Shipbuilding Corporation Limited,Xi’an 710077,China)
出处 《水下无人系统学报》 2021年第2期189-195,共7页 Journal of Unmanned Undersea Systems
关键词 纯方位 目标跟踪 初值 后向迭代 bearings-only target tracking initial state backward iteration
  • 相关文献

参考文献2

二级参考文献9

  • 1余小琴 刘贯领 沈文苗.多基地浮标目标运动分析.声学技术,2009,28(6):112-114.
  • 2周宏仁 敬忠良 王培德.机动目标跟踪[M].北京:国防工业出版社,1998..
  • 3PACHTER M, CHANDLER P R, Universal Linearization Concept for Extended Kalman Filtering[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(3): 946-961.
  • 4JULIER S, UHLMAN J, DURRANT-WHYTE H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 5ZHANG Yong-an, ZHOU Di, DUAN Guang-Ren. Passive position location estimation using particle filtering[C]//2004 8th Intemation Conference on Control, Automaion, Robotics and Vision. Kunming, China: IEEE, 2004: 1635-1639.
  • 6GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceedings-Radar, Sonar and Navigation, 1993, 140(2): 107-110.
  • 7DOUCET A, GODSILL S. On sequential Monte Carlo sampling methods for Bayesian filtering[R]. Cambridge: University of Cambridge, 1998: 1-36.
  • 8FOWLER M. Analysis of single-platform passive emitter location with terrain data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 495-507.
  • 9王成,王英民,陶林伟,甘甜.多基地声纳距离信息定位算法研究及精度分析[J].系统仿真学报,2009,21(6):1570-1572. 被引量:4

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部