摘要
为了快速、准确地识别食用油类型,采用激光诱导荧光技术,利用405 nm激光在食用油表面诱导离子体激发并发出荧光,由SpectraSuite软件采集和记录荧光光谱数据。以5种食用油为实验对象,实验采集的光谱数据共750组,分别采用4种不同的算法(BP算法、AdaBoost⁃BP算法、AdaBoost⁃DT算法、AdaBoost⁃KNN算法)对光谱数据建立训练模型,通过4种模型的比较得出,以KNN算法作为弱分类器的自适应提升(AdaBoost)模型对光谱数据的分类效果最好,迭代100次后测试准确率为100%,且泛化误差为0,表明此算法具有很好的泛化性能和稳定性。
In order to identify the type of edible oil quickly and accurately,the laser⁃induced fluorescence technology is adopted,that is,the 405 nm laser is used to induce and excite fluorescence on the surface of edible oil.The fluorescence spectrum data is collected and recorded by SpectraSuite software.Five kinds of edible oil were taken as the experimental objects,and 750 groups of spectral data were collected in the experiment.Four different algorithms(BP algorithm,AdaBoost⁃BP algorithm,AdaBoost⁃DT algorithm,AdaBoost⁃KNN algorithm)are adopted to establish the training model of spectral data.By comparison of the four models,it is concluded that the KNN algorithm used as the AdaBoost model of weak classifier is the best for classification of the spectral data.The testing accuracy is 100%after 100 iterations,and the generalization error is 0,which indicate that it has good generalization performance and stability.
作者
周孟然
赵晋级
王煜
胡锋
来文豪
卞凯
ZHOU Mengran;ZHAO Jinji;WANG Yu;HU Feng;LAI Wenhao;BIAN Kai(School of Electrical and Information Engineering,Anhui University of Technology,Huainan 232000,China;Nanjing Sifang Yineng Power Automation Co.,Ltd.,Nanjing 211111,China)
出处
《现代电子技术》
2021年第10期34-38,共5页
Modern Electronics Technique
基金
国家重点研发计划(2018YFC0604503)
国家安全生产重大事故防治关键技术科技项目(anhui⁃0001⁃2016AQ)
国家安全监管总局安全生产重特大事故防治关键技术科技项目(anhui⁃0010⁃2018AQ)。