期刊文献+

结合Hyperledger Fabric技术的微服务评价系统

Microservice Evaluation System Based on Hyperledger Fabric
下载PDF
导出
摘要 微服务已逐渐成为互联网应用所采用的设计架构,为了提升微服务价值,需要定期对各微服务的应用价值进行公正、透明的评价,推动开发人员对低价值微服务进行优化升级.为此,提出一种基于区块链技术的微服务评价系统,利用Hyperledger Fabric区块链技术的分布式记账和共识算法,对微服务各维度的评价数据进行记账,保证评价数据的不可篡改性和可追溯性.同时,结合层次分析法和熵值法构建微服务综合评价模型,计算得到微服务综合得分.实验结果表明,该系统能够对微服务的评价结果进行追踪溯源,相比单一评价模型,该评价结果更为合理,为微服务的智能管理提供有效数据支撑. Microservices have been fused into the design framework of Internet applications over time.It is necessary to evaluate the application value of microservices fairly and transparently on a regular basis to improve the value of microservices,promoting developers to upgrade low-cost microservices.Therefore,a microservice evaluation system based on blockchain technology is proposed.It records the evaluation data of each dimension of microservices with the distributed accounting and consensus algorithm of Hyperledger Fabric blockchain technology,protecting the nontampering and traceability of evaluation data.Besides,this study combines the analytic hierarchy process and the entropy method to build a comprehensive evaluation model of microservices and then calculates the comprehensive score of them.Experimental results demonstrate that the system can trace the source of the evaluation results of microservices,producing more reasonable results than a single evaluation model.It can provide effective data support for intelligent management of microservices.
作者 徐健 XU Jian(China Mobile Communications Group Fujian Co.Ltd.,Fuzhou 350003,China)
出处 《计算机系统应用》 2021年第5期107-113,共7页 Computer Systems & Applications
关键词 区块链 Hyperledger Fabric 微服务 层次分析法 熵值法 Blockchain Hyperledger Fabric microservice analytic hierarchy process entropy method
  • 相关文献

参考文献10

二级参考文献35

  • 1郭显光.一种新的综合评价方法──组合评价法[J].统计研究,1995,12(5):56-59. 被引量:196
  • 2余敏,李战怀,张龙波.P2P数据管理[J].软件学报,2006,17(8):1717-1730. 被引量:17
  • 3Friemdman N, Russell S. Image segmentation in video sequences: a probabilistic approach [ C ]//Proc of the 13 th Conference Annual Con- ference on Uncertainty in Artificial Intelligence. San Francisco: Mor- gan Kaufmann, 1997 : 175-181.
  • 4Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[ C]//Proe of Conference on Computer Vision and Pattern Recognition. 1999:246-252.
  • 5Kim K, Chalidabhongse T H, Harwood D,et al. Real-time foreground- background segmentation using eodebook model[ J]. Real-Time Ima- ging,2005,11 (3) :172-185.
  • 6Kim K, Chalidabhongse T H, Harwood D, et al. Background modeling and subtraction by codebook construction[ C ]//Proc of International Conference on hnage Processing. 2004:3061-3064.
  • 7O|ivier B,Marc V D. ViBe:a universal background subtraction algo- rithm for video sequences[ J ]. I EEE Trans on Image Processing, 2011,20(6) : 1709-1724.
  • 8Elgammal A,Duraiswami R, Harwood D, et al. Back-ground and fore- ground mtxleling using nonparametric kernel density estimation for visual surveillance[ J ]. Proceedings of the IEEE, 2002,90 ( 7 ) : 1151-1163.
  • 9Zhang Rui, Gong Weiguo, Gr'zeda V, et al. An adaptive learning rate method for improving adaptability of background models [ J ]. IEEE Signal Processing Letters ,2013,20 ( 12 ) : 1266-1269.
  • 10Lee D S. Effective Gaussian mixture learning for video background subtraction[ J]. IEEE Trans on Pattern Analysis and Machine In- telligence ,2005,27(5 ) :827-832.

共引文献1988

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部