期刊文献+

基于改进视觉词袋模型的水声目标识别 被引量:3

Underwater Acoustic Target Recognition Based on Improved Bag of Visual Words
下载PDF
导出
摘要 水声目标识别的任务是通过采集到水声目标的信号来对目标进行分类,在海洋勘探,监听技术等领域有着非常重要和广泛的应用.由于海洋环境的复杂性,以及船只目标发动机的多样性以及噪声的存在,水声目标识别是一个困难的任务.传统的特征提取方法无法提取到足够有效的特征表示,充分地表示目标.为了解决这个问题,本文提出了一种基于改进的视觉化词袋模型的水声识别算法,通过使用视觉化词袋模型对频谱图进行高维的特征提取,然后使用了自然语言处理领域中常见的词频-逆文件频率(TF-IDF)算法来对得到的特征向量进行权重调整,然后输入到多层感知机中,对水声目标进行分类识别.实验结果表明,本文提出的识别算法取得了92.53%的正确率,相比于当前效果最好的深度玻尔兹曼机(DBM)算法有了明显的提升. Underwater acoustic target recognition is to classify the targets through collecting the signals of the underwater acoustic targets and has very important and extensive applications in the fields of ocean exploration and monitoring technology.Due to the complexity of the marine environment,the diversity of target ship engines,and the background noise,underwater acoustic target recognition is difficult.Traditional feature extraction methods cannot extract effective feature representations to fully represent the targets.In order to solve this problem,we propose an underwater acoustic target recognition algorithm based on the improved bag of visual words.Specifically,this algorithm adopts the bag of visual words to extract high-dimensional features in a spectro gram and then adjusts the weights of the obtained feature vectors using the Term Frequency-Inverse Document Frequency(TF-IDF)algorithm commonly used in the field of natural language processing.Furthermore,the vectors are input to a Multi Layer Perceptron(MLP)to classify and recognize the underwater acoustic targets.The experimental results show that the recognition algorithm proposed in this study achieves an accuracy of 92.53%,which is a significant improvement in comparison with the best Deep Boltzmann Machine(DBM)algorithm at present.
作者 潘安迪 肖川 陈曦 PAN An-Di;XIAO Chuan;CHEN Xi(School of Computer Science,Fudan University,Shanghai 201203,China)
出处 《计算机系统应用》 2021年第5期170-175,共6页 Computer Systems & Applications
基金 国家自然科学基金(61671156)。
关键词 支持向量机 水声识别 视觉词袋 TF-IDF 音频分类 Support Vector Machine(SVM) underwater acoustic target recognition bag of visual words Term Frequency-Inverse Document Frequency(TF-IDF) audio classification
  • 相关文献

参考文献4

二级参考文献29

  • 1詹艳梅,曾向阳,孙进才.基于粗糙集理论的目标特征选择方法[J].自然科学进展,2004,14(12):1483-1487. 被引量:2
  • 2杨宏晖,孙进才,袁骏.基于支持向量机和遗传算法的水下目标特征选择算法[J].西北工业大学学报,2005,23(4):512-515. 被引量:19
  • 3ZHENG SiYi,GUO HongXia,LI YaAn,WANG BingHe,ZHANG PengYi.A new method for detecting line spectrum of ship-radiated noise using Duffing oscillator[J].Chinese Science Bulletin,2007,52(14):1906-1912. 被引量:22
  • 4TUCKER S, BROWN G J. Classification of transient sonar sounds using perceptually motivated features [J]. IEEE Journal of Oceanic Engineering, 2005, 30 (3):588-600.
  • 5VACCARO R J. The past, present and future of un derwater acoustic signal processing [J].IEEE Signat Processing Magazine, 1998, 15(4): 21-51.
  • 6YANG Honghui, SUN Jincai. Feature sdection for multi class underwater acoustic targets via SVMs and genetic al gorithms [EB/OL] (2005-10-16)[2011-01-10]. http:// apps. webofknowledge.com/full_record, do? qid=5&log_ event = no&viewType = full Record&product =WOS & SID= P2e517 AOA66IejaecmBg>page= 1&doc=1.
  • 7ZHAO Zheng, LIU Huan. Searching for interacting features in subset selection [J].Intelligent Data Analysis, 2009, 13(2) :207-228.
  • 8SWlNIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition [J]. Pattern Recognition Letters, 2003, 24(6): 833-849.
  • 9DAVIS S, MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognicontinuously spoken sentences [J].IEEE Trans ASSP, 1980, 28(4).. 357-366.
  • 10VAPNIK V. The nature of statistical learning theory [M]. New York,USA.. Springer-Verlag, 2000.

共引文献22

同被引文献36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部