期刊文献+

无人机目标分类的深度卷积网络设计与优化 被引量:3

Design and Optimization of Deep Convolutional Neural Network for UAV Target Classification
下载PDF
导出
摘要 针对传统无人机目标分类方法效率低、特征提取能力不足和适应性差等问题,通过对无人机自身特点和现有分类方法的分析,提出了引入注意力机制优化深度卷积神经网络的无人机分类方法.设计多组对比实验,根据实验效果设计出模型结构为3层卷积层、3层池化层、2层全连接层的卷积神经网络进行训练,得到最优的无人机目标分类模型,再引入卷积注意力模块对特征图元素进行加强和抑制,引入批归一化层加速模型收敛,提升泛化能力.实验结果表明:引入卷积注意力模块和批归一化层优化后的无人机目标分类模型的识别率达到92.44%,较优化前提升1.5%,相比于其它神经网络模型具有识别率高、收敛速度快的优点,可以基本满足实际场景中无人机目标分类的要求. Aiming at the problems such as low efficiency,limited ability of feature extraction,and poor adaptability of traditionalclassification methods for UAV targets,this study proposes a UAV classification method that introduces attention modules to optimize deep convolutional neural networks by analyzing the characteristics of UAVs and existing classification methods.Multiple sets of comparative experiments are designed for a model structure of a convolutional neural network with three convolutional layers,three pooling layers,and two fully connected layers according to the experimental results for training to obtain the optimalclassification model for UAV targets.Then,the convolutional block attention module is introduced to strengthen and suppress feature map elements,and the batch normalization layer is introduced to accelerate convergence and improve generalization capabilities of the model.Experimental results show that after introduction of convolution block attention modules and batch normalization layers,the recognition rate of the classification model for UAV targets rises by 1.5%to 92.44%.Its advantages of high recognition rate and fast convergence over other neutral network models can basically meet the requirements of UAV target classification in actual scenes.
作者 皮骏 张志力 李想 张春泽 PI Jun;ZHANG Zhi-Li;LI Xiang;ZHANG Chun-Ze(School of General Aviation,Civil Aviation University of China,Tianjin 300300,China;School of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China;Tianjin Xunlian Technology Co.Ltd.,Tianjin 310600,China)
出处 《计算机系统应用》 2021年第5期290-297,共8页 Computer Systems & Applications
关键词 无人机分类 卷积神经网络 注意力机制 批归一化 UAV classification Convolutional Neural Network(CNN) attention module batch normalization
  • 相关文献

参考文献11

二级参考文献105

  • 1周新伦,李锋,华星城,韦剑.甲骨文计算机识别方法研究[J].复旦学报(自然科学版),1996,35(5):481-486. 被引量:22
  • 2田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 3王嘉梅,文永华,李燕青,高雅莉.基于图像分割的古彝文字识别系统研究[J].云南民族大学学报(自然科学版),2008,17(1):76-79. 被引量:10
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 7Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 8Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 9Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 10Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.

共引文献884

同被引文献42

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部