期刊文献+

基于跨模态深度度量学习的甲骨文字识别 被引量:9

Oracle Character Recognition Based on Cross-Modal Deep Metric Learning
下载PDF
导出
摘要 甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类.拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像,临摹甲骨文字图像是经过专家手工书写得到的高清图像.拓片甲骨文字样本难以获得,而临摹文字样本相对容易获得.为了提高拓片甲骨文字识别的性能,本文提出一种基于跨模态深度度量学习的甲骨文字识别方法,通过对临摹甲骨文字和拓片甲骨文字进行共享特征空间建模和最近邻分类,实现了拓片甲骨文字的跨模态识别.实验结果表明,在拓片甲骨文字识别任务上,本文提出的跨模态学习方法比单模态方法有明显的提升,同时对新类别拓片甲骨文字也能增量识别. There are two types of oracle character images:handprinted ones that are clean,and ones scanned from bones and shells that are noised.The collection of handprinted samples is easier than that of scanned images.Therefore,to improve the recognition of scanned oracle characters,we propose a method based on cross-modal deep metric learning to take advantage of the handprinted samples.Via shared feature space learning using cross-modal handprinted and scanned samples,scanned characters can be recognized by nearest neighbor classification in the shared space.Experimental results demonstrate that the proposed method not only achieves better performance in oracle character recognition but also can recognize new categories incrementally.
作者 张颐康 张恒 刘永革 刘成林 ZHANG Yi-Kang;ZHANG Heng;LIU Yong-Ge;LIU Cheng-Lin(National Laboratory of Pattern Recognition,Institute of Automation of Chinese Academy of Sciences,Beijing 100190;School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049;Chinese Academy of Sciences Center for Excellence of Brain Science and Intelligence Technology,Beijing 100190;Anyang Normal University,Anyang 455099)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第4期791-800,共10页 Acta Automatica Sinica
基金 新一代人工智能重大项目(2018AAA0100400) 国家自然科学基金(61936003,61721004) 安阳师范学院甲骨文信息处理教育部重点实验室开放课题(KFKT2018001)资助。
关键词 甲骨文字识别 深度度量学习 最近邻分类 跨模态学习 Oracle character recognition deep metric learning nearest neighbor classification cross-modal learning
  • 相关文献

参考文献2

二级参考文献153

  • 1钱跃良,林守勋,刘群,刘洋,刘宏,谢萦.863计划中文信息处理与智能人机接口基础数据库的设计和实现[J].高技术通讯,2005,15(1):107-110. 被引量:4
  • 2周新伦,李锋,华星城,韦剑.甲骨文计算机识别方法研究[J].复旦学报(自然科学版),1996,35(5):481-486. 被引量:22
  • 3王嘉梅,文永华,李燕青,高雅莉.基于图像分割的古彝文字识别系统研究[J].云南民族大学学报(自然科学版),2008,17(1):76-79. 被引量:10
  • 4Hildebrandt T H, Liu W T. Optical recognition of handwritten Chinese characters:advances since 1980. Pattern Recognition, 1993, 26(2):205-225.
  • 5Suen C Y, Berthod M, Mori S. Automatic recognition of handprinted characters——the state of the art. Proceedings of the IEEE, 1980, 68(4):469-487.
  • 6Tai J W. Some research achievements on Chinese character recognition in China. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(01n02):199-206.
  • 7Liu C L, Jaeger S, Nakagawa M. Online recognition of Chinese characters:the state-of-the-art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):198-213.
  • 8Cheriet M, Kharma N, Liu C L, Suen C Y. Character Recognition Systems:a Guide for Students and Practitioners. USA:John Wiley & Sons, 2007.
  • 9Plamondon R, Srihari S N. Online and off-line handwriting recognition:a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):63-84.
  • 10Dai R W, Liu C L, Xiao B H. Chinese character recognition:history, status and prospects. Frontiers of Computer Science in China, 2007, 1(2):126-136.

共引文献128

同被引文献104

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部