摘要
对一类具有时变时滞的随机递归神经网络模型,研究了其系统的全局渐近稳定性,并给出了一个新的控制器设计方法.基于逆最优方法和Lyapunov函数,在不需要求解Hamilton-Jacobi-Bellman方程情形下,对于一个有意义的成本函数,反馈控制器的设计既能使系统达到全局最优,又能保证系统的全局渐近稳定性.
The global asymptotic stability of a class of stochastic recurrent neural networks with time-varying delays is investigated in this paper,and a new controller design method is presented.The analysis tool developed in this paper is based on inverse optimal method and Lyapunov function,which do not require to solve Hamilton-Jacobi-Bellman equations.In addition,the design of the feedback controller can not only make the system achieve global optimization,but also ensure the global asymptotic stability of the system.
作者
郭旭晖
姚志易
马维军
GUO Xuhui;YAO Zhiyi;MA Weijun(School of Information Engineering,Ningxia University,Yinchuan Ningxia 750021)
出处
《宁夏师范学院学报》
2021年第4期5-10,共6页
Journal of Ningxia Normal University
基金
国家自然科学基金项目(62063028)
宁夏重点研发项目(引才专项)(2018BEB04029)
宁夏自然科学基金项目(2019AAC03029).
关键词
随机递归神经网络
逆最优
时变时滞
全局渐近稳定性
Stochastic recurrent neural network
Time-varying delay
Inverse optimality
Global asymptotic stability