摘要
设R是2-扭自由σ-素环,I是R的非零σ-理想,设F,G是R的广义导子,d,g是它们的伴随导子,且与σ可交换,若F(x■y)=F(x)■y-d(y)■x,x,y∈I,则R是可交换的.用代数的交换性讨论了广义导子在σ-素环上的性质,并将素环上广义导子推广到σ-素环上.
Let R be a 2-torsion freeσ-prime ring,I be a non-zeroσ-ideal of R,F and G be generalized derivations of R and d and g be adjoint derivations of them,which are commutative withσ.If F(x■y)=F(x)■y-d(y)■x,,for all x,y∈I,then R is commutative.In this paper,we discuss the properties of generalized derivations over prime rings and generalize the generalized derivations over prime rings toσ-prime rings.
作者
杨悦
杜奕秋
YANG Yue;DU Yiqiu(Graduate School,Jilin Normal University,Changchun Jilin 130000)
出处
《宁夏师范学院学报》
2021年第4期17-19,43,共4页
Journal of Ningxia Normal University
关键词
σ-素环
σ-理想
导子
广义导子
σ-prime ring
σ-ideal
Derivation
Generalized derivation