期刊文献+

群体异常监测系统中特征点的提取与优化研究

Research on Extraction and Optimization of Feature Points in Swarm Anomaly Monitoring System
下载PDF
导出
摘要 针对公共场合安全监控等方面的应用需求,论文研究并设计实现了一个人群突发异常行为的监测系统。目前应用的大多数系统主要是对运动对象进行监测和跟踪。为提高监测的精确度,提升监测效率,在监测过程中通过对特征点进行判断处理会得到更好的效果。所以在样本中选取合适、准确的特征点是关键。论文主要从某一范围内高度唯一性和处于运动前景区域的并具有良好运动属性的特征点两方面进行判断选取。根据判定条件,依据Harris特征点提取算法对特征点进行初步提取,再通过混合高斯背景建模算法对特征点进行进一步的筛选。 In view of the application requirements of safety monitoring in public places,this paper studies and designs a monitoring system for sudden abnormal behavior of people.Most of the systems used at present mainly monitor and track moving objects.In order to improve the accuracy and efficiency of monitoring,better results can be obtained by judging and processing feature points in the process of monitoring.Therefore,selecting appropriate and accurate feature points in the sample is the key.The paper mainly selects the feature points which are highly unique in a certain range and which are in the motion foreground region and have good motion attributes.According to the decision conditions,the feature points are extracted preliminarily according to the Harris feature point extraction algorithm,and then the feature points are further screened by the mixed Gaussian background modeling algorithm.
作者 薛静 XUE Jing(Xi'an Railway Vocational&Technical Institute,Xi'an 710014,China)
出处 《中小企业管理与科技》 2021年第13期176-177,共2页 Management & Technology of SME
基金 西安铁路职业技术学院2020年度立项课题《面向智慧校园的学生异常行为监测系统研究》(课题编号:XTZY20J06)。
关键词 群体异常监测 特征点 运动前景区域 population anomaly monitoring feature points motion foreground region
  • 相关文献

参考文献1

二级参考文献18

  • 1BANDINI S,FEDERICI M L,VIZZARI G.A methodology for crowd modelling with situated cellular agents[C].WOA 2005,Camerino,Italy,2005:91-98.
  • 2MUSSES R,BABSKI C,CAPIN T,et al.Crowd Modelling in collaborative virtual environments[J].ACM Symposium on Virtual Reality Software and Technology,Taipei,Taiwan,1998:115-123.
  • 3ULICNY B,THALMANN D.Crowd simulation for interactive virtual environments and VR training systems[J].Eurographic Workshop on Computer Animation and Simulation,Manchester,UK,2001:163-170.
  • 4ANDRADE E L.Simulation of crowd problems for computer vision[EB/OL].Technical Report,The University of Edinburgh,Available:homepages.inf.ed.ac.uk/rbf/PAPERS/vcrowds.pdf (EDI-INF-RR-0493).
  • 5CUPILLARD F,AVANZI A,BREMOND F,et al.Video understanding for metro surveillance[C].IEEE International Conference on Networking,Sensing and Control,Taipei,Taiwan,2004:186-191.
  • 6CHEN Y F,ZHONG Z,XU Y S.Multi-agent based surveillance[C].IEEE International Conference on Intelligent Robots and Systems (IROS06),Beijing,China,2006:2810-2815.
  • 7JLIPTON A.Intelligent video surveillance in crowds[EB/OL].Technical Report,ObjectVideo Ltd.,Available:www.dbvision.net/objects/pdf/whitepapers/FlowControl.pdf.
  • 8MARANA A N,VELASTIN S A,COSTA L F,et al.Automatic estimation of crowd density using texture[C].International Workshop on Systems and Image Processing(IWSIP97),Poland,1997.
  • 9RAHMALAN H,NIXON M S,CARTER J N.On crowd density estimation for surveillance[C].Conferrence of Imaging for Crime Detection and Prevention (ICDP06),London,UK,2006.
  • 10SHI J,TOMASI C.Good feature to track[C].IEEE Conference on Computer Vision and Pattern Recognition(CVPR94),Seattle,U.S.,1994.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部