期刊文献+

一类分数阶金融超混沌系统的比例积分滑模同步 被引量:2

Proportion integral sliding mode synchronization of a class of fractional-order hyper-chaotic financial systems
下载PDF
导出
摘要 利用比例积分滑模方法研究一类分数阶金融超混沌系统的同步控制方案,通过设计滑模函数控制器和适应规则得到分数阶金融超混沌系统取得比例积分滑模同步的充分条件.数值模拟结果表明:积分滑模面设计得越简单,对假设条件要求越弱,系统趋于同步所需时间更短. Four synchronization control cases for fractional-order financial hyper-chaotic systems are studied using proportion integral sliding mode methods inthe paper.Four sufficient conditions for fractional-order hyper-chaotic financial systems to obtain proportion integral sliding mode synchronization arearrived.The numerical simulation results show that the simpler the integrated sliding surface is,the weaker the assumptions are,and the shorter the timerequired for the system to synchronize.
作者 王春彦 邸金红 毛北行 WANG Chunyan;DI Jinhong;MAO Beixing(School of Intelligent Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450015,China;School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2020年第6期28-33,共6页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(71371173) 河南省科技攻关计划资助项目(172102210080).
关键词 分数阶 比例积分滑模 金融超混沌 fractional-order integral sliding mode financial hyper-chaotic
  • 相关文献

参考文献4

二级参考文献23

  • 1Wu Xiangjun,Lu Hongtao,Shen Shilei.Synchronization of a new fractional-order hyperchaotic system[J].Physics Letters A,2009,373(27/28):2329-2337.
  • 2Pecora L M,Carroll T L.Synchronization of chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
  • 3Li Demin,Wang Zidong,Zhou Jie,et al.A note on chaotic synchronization of time-delay secure communication systems[J].Chaos,Solitons & Fractals,2008,38(4):1217-1224.
  • 4Du Hongyue,Shi Peng,Lu Ning.Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control[J].Nonlinear Analysis:Real World Applications,2013,14 (2):1182-1190.
  • 5Li Jiangcheng,Mei Dongcheng.The risks and returns of stock investment in a financial market[J].Physics Letters A,2013,377(9):663-670.
  • 6Wang Zhen,Huang Xia,Shi Guodong.Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay[J].Computers & Mathematics with Applications,2011,62(3):1531-1539.
  • 7Bhalekar S,Daftardar-Gejji V.Fractional ordered Liu system with time-delay[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(8):2178-2191.
  • 8Yin Chun,Zhong Shouming,Chen Wufan.Design of sliding mode controller for a class of fractional-order chaotic systems[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):356-366.
  • 9Deng Weihua,Li Changpin,Lu Jinhu.Stability analysis of linear fractional differential system with multiple time delays[J].Nonlinear Dynamics,2007,48(4):409-416.
  • 10Briggs K.An improved method for estimating Lyapunov exponents of chaotic time series[J].Physics Letters A,1990,151(1/2):27-32.

共引文献58

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部