期刊文献+

离散型Hilbert不等式的推广及应用 被引量:3

On an Extension of the Discrete Type Hilbert Inequality and Its Application
原文传递
导出
摘要 通过引入两个参数,构造了一个离散的分式型的核函数,并由此建立相应的Hilbert不等式。利用余切函数的部分分式展开,证明了所构建的不等式的常数因子可用余切函数表示,且常数因子是最佳的。通过对参数赋值,得到了一些有趣的特殊结果。 By introducing two parameters, a discrete kernel function of fraction type is constructed, and the corresponding Hilbert inequality is established. By using the partial fraction expansion of the cotangent function, it is proved that the constant factor of the constructed inequality can be expressed by cotangent function, and the constant factor is optimal. Finally, by specifying the values of parameters, some interesting special results are obtained.
作者 有名辉 YOU Minghui(Mathematics Teaching and Research Section,Zhejiang Institute of Mechanical and Electrical Engineering,Hangzhou 310053,Zhejiang,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2021年第2期179-184,共6页 Journal of Wuhan University:Natural Science Edition
基金 浙江省教育厅科研项目(Y201737260) 浙江机电职业技术学院科教融合项目(A-0271-20-007)。
关键词 HILBERT不等式 离散型 部分分式展开 余切函数 Hilbert inequality discrete type partial fraction expansion cotangent function
  • 相关文献

参考文献2

二级参考文献14

  • 1杨必成,高明哲.关于Hardy-Hilbert不等式中的一个最佳常数[J].数学进展,1997,26(2):159-164. 被引量:57
  • 2王竹溪 郭敦仁.特殊函数论[M].北京:科学出版社,1979..
  • 3Hardy G H, Littlewood J E, Polya G. Inequalities[M]. Cambridge Univ Press, Cambridge, 1952.
  • 4Mitrinovic D S, Pecaric J E, Fink A M. Inequalities Involving Functions and Their Integrals and Derivatives[M].Kluwer Academic Publishers, Boston, 1991.
  • 5Yang Bicheng. On Hardy-Hilbert's integral inequality[J]. J Math Anal Apph 2001, 261: 296-306.
  • 6Hardy, G. H., Littlcwood, J. E. & Polya, G., Inequalitics [M], Cambridge University Press, Cambridge, 1952.
  • 7Mitrinovic, D. S. Pecaric, J. E. & Fink, A. M., Inequalities involving functions and their intergrals and derivatives [M], Kluwer Academic Publishers, Boston, 1991.
  • 8Gao Mingzhe & Yang Bicheng, On the extended Hilbert's inequality [J], Proceedings of the American Mathematical Society, 126(1998), 751-759.
  • 9Yang Bicheng & Loknath Debnath, On a new strengthened Hardy-Hilbert's inequality[J], Internat. J. Math. & Math. Sci., 21:2(1998), 403-408.
  • 10Pachpattc, B. G., On some new inequalities similar to Hilbert's inequality [J], J. Math.Anal. & Appl., 226(1998), 166-179.

共引文献42

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部