期刊文献+

基于局部方差的医学图像配准模型 被引量:1

下载PDF
导出
摘要 随着人工智能在医疗领域的火热发展,基于深度学习的医学图像配准成为近年来的研究热点。然而当下的深度学习配准模型存在精度低、局部配准效果较差等缺陷。针对此类问题,本文从样本均衡机制的思想出发,以局部方差作为权重因子对医学图像配准方法中经典损失函数进行改进,提出了FMSE-LV损失函数,并使用深度学习框架Voxelmorph在公开的脑部核磁共振数据集上进行验证,实验结果表明,改进后的损失函数在不影响变形场整体折叠情况的前提下,配准的精度得到了提升。
作者 王金泽
出处 《电子制作》 2021年第8期36-38,共3页 Practical Electronics
  • 相关文献

参考文献1

二级参考文献15

  • 1Bhattacharya M, Das A. Multimodality medical image regis?tration and fusion techniques using mutual information and genetic algorithm-based approaches. Software Tools and Algorithms for Biological Systems, 2011, 696: 441-449.
  • 2Makni N, Toumi I, Puech P, et al. A nonrigid registration and deformation algorithm for ultrasound &. MR images to guide prostate cancer therapies/ /Proceedings of the IEEE Engineering in Medicine and Biology Society. Buenos Aires, Argentina, 2010: 3711-3714.
  • 3De Craene M, Piella G, Camara 0, et al. Temporal diffeo?morphic free- form deformation: Application to motion and strain estimation from 3D echocardiography. Medical Image Analysis, 2012, 16(2): 427-450.
  • 4Ardekani B A, Guckemus S, Bachman A, et al. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 2005, 142(1): 67-76.
  • 5Hermosillo G, Faugeras 0. Dense image matching with global and local statistical criteria: A variational approach/ / Proceedings of the IEEE Computer Vision and Pattern Recognition. Kauai , USA, 2001: 73-78.
  • 6Zhao v . Soatto S. Nonrigid registration combining global and local statistics/ /Proceedings of the IEEE Computer Vision and Pattern Recognition. Miami, USA, 2009: 2200- 2207.
  • 7El-Baz A, Farag A, Gimel'farb G, Abdel-Hakim A E. Image alignment using learning prior appearance modell /Proceedings of the IEEE International Conference on Image Processing. Atlanta, USA, 2006: 341-344.
  • 8Wyatt p, Noble J. MAP-MRF joint segmentation and registration/ /Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Tokyo, Japan, 2002, 2488: 580-587.
  • 9Zheng G, Zhang X. A unifying MAP-MRF framework for deriving new point similarity measures for intensity-based 20- 3D registration/ /Proceedings of the International Conference on Pattern Recognition. Hong Kong, China, 2006: 1181- 1185.
  • 10Friston K J, Ashbumer J, Frith C 0, et al. Spatial registration and normalization of images. Human Brain Mapping, 1995, 3(3): 165-189.

共引文献10

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部