期刊文献+

激光热处理对硅锗芯石英包层光纤成分分布的影响 被引量:2

Effects of Laser Thermal Processing on Composition Distribution of SiGe Core Silica Cladding Fiber
原文传递
导出
摘要 硅锗合金在非平衡条件下凝固时容易出现成分偏析,光纤制备过程带来的成分分布不均匀问题会导致很高的光纤损耗。利用CO_(2)激光对半圆柱硅棒和锗棒拼接法制备的硅锗芯石英包层光纤进行热处理,研究不同处理条件对纤芯成分分布的影响。实验结果表明,在激光扫描方向上的边缘区域可形成连续的富硅硅锗合金,并且越靠近该边缘区域,纤芯的成分分布越均匀。本研究为制备和优化硅锗芯光纤,实现纤芯均匀的成分分布提供了方法。 Composition segregation can easily occur during the non-equilibrium solidification of SiGe alloys.The non-uniform composition distribution caused by the fiber fabrication process leads to high fiber loss.In this paper,the thermal processing of the SiGe core silica cladding fiber prepared by the assembly of semi-cylindrical Si and Ge rods is conducted using a CO 2 laser,and the effects of different thermal processing conditions on the fiber core composition distribution are studied.The experimental results show that continuous Si-rich SiGe alloys can form at edge of laser scanning area along the laser scanning direction,and the closer to the edge,the more uniform the composition distribution of the fiber core is.This study provides a method to fabricate and optimize a SiGe core fiber to achieve uniform composition distribution of the fiber core.
作者 何建 陈娜 陈振宜 刘书朋 商娅娜 He Jian;Chen Na;Chen Zhenyi;Liu Shupeng;Shang Yana(Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200444,China;Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication,Shanghai University,Shanghai 200444,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第3期118-124,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61575120、61475095、61675125、61875118)。
关键词 光纤光学 硅锗芯光纤 光纤材料 激光热处理 成分偏析 富硅均匀区 fiber optics SiGe core fiber optical fiber material laser thermal processing composition segregation Si-rich uniform region
  • 相关文献

参考文献4

二级参考文献12

  • 1王光伟,屈新萍,茹国平,郑宏兴,李炳宗.LPCVD-SiGe薄膜的物理及电学特性[J].微电子学,2007,37(2):168-172. 被引量:3
  • 2NORITAKA U,RYOTA N, ICHIRO Y. CZ-grown Si1-xGex bulk crystals as a substrate for strained Si-based quantum wells[J]. APL,2007,90,181914:1-3.
  • 3WOLLWEBER J, SCHULZ D, SCHRODER W. The growth of SixGe1-x crystals for infrared solar cell applications[ C ] //IEEE First World Conf on Photovohaic Energy Conversion. Hawaii, USA, 1994 : 1372-1374.
  • 4SMITHER R, ABU K, ABROSIMOV N. Diffraction efficiency and diffraction bandwidth of the thermal-gradient and composition gradient crystals [ J ]. Review of Scientific Instruments ,2005,76(123107) : 1-19.
  • 5ABROSIMOV NV, ROSSOLENKO S, ALEX V. Single crystal growth of Si1-xGex by the Czochralski technique [J]. J of Crystal Growth, 1996,166 : 657-662.
  • 6ABROSIMOV NV, LUDGE A, RIEMANN H.Lateral photovoltage scanning(LPS) method for the visualization of the solid-liquid interface of Si1-x Gex single crystals [ J ]. J of Crystal Growth, 2002,237-239 : 356-360.
  • 7BURGHARTZ J N, SOYUER M, JENKINS K A. Integrated RF and microwave components in BiCMOS technology [J]. IEEE Trans Elec Dev, 1996; 43 (9) :1559-1570.
  • 8TEZUKA T. SUGIYAMA N. TAKAGI S. Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction [J], Appl Phys Lett,2001, 79(12) : 1798-1800.
  • 9NICOLET M A,LIU W S. Oxidation of GeSi [J]. Microelec Engineer, 1995 ;28(1) ; 185-191.
  • 10谢孟贤,古妮娜.SiGe半导体在微电子技术发展中的重要作用[J].微电子学,2008,38(1):34-43. 被引量:10

共引文献1

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部