摘要
闭图像定理表明Banach空间中线性算子图像的闭性蕴含算子的连续性.相反地,一个更一般的结论是从拓扑空间到Hausdorff空间的映射的连续性蕴含其图像的闭性.本文通过举例说明了其逆命题不成立,特别强调了值域空间的Haudorff分离性的重要性.此外,利用此结论证明了Banach空间中线性算子对于弱拓扑的连续性与对于强拓扑的连续性等价.最后,通过对值域空间附加紧致性条件建立了从一个拓扑空间到一个紧致Hausdorff空间的映射的连续性与其图像闭性之间的等价刻画.
The closed graph theorem shows that the closedness of the graph of the linear operator in Banach spaces implies its continuity.On the contrary,a more general conclusion is that the continuity of the mapping from a topological space to a Hausdorff space implies the closedness of its image.This paper provides several counterexamples to illustrate the inverse proposition is not true,and especially emphasizes the importance of the Haudorff separation of the range space.In addition,this conclusion is used to prove that the continuity of linear operators in Banach space for the weak topology is equivalent to the continuity for the strong topology.Finally,an equivalent characterization between the continuity of the mapping from a topological space to a compact Hausdorff space and the closedness of its image is established by attaching a compactness condition to the range space.
作者
沈永红
孙小科
SHEN Yong-hong;SUN Xiao-ke(School of Mathematics and Statistics,Tianshui Normal University,Tianshui Gansu 741001)
出处
《甘肃高师学报》
2021年第2期1-4,共4页
Journal of Gansu Normal Colleges
基金
国家自然科学基金项目“带有gH-导数的时间尺度上模糊动力学方程的解与Ulam稳定性研究”(11701425)
天水师范学院伏羲科研创新团队项目“微分方程建模分析与数值模拟”(FXD2020-03).