期刊文献+

Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology 被引量:2

下载PDF
导出
摘要 The use of traditional chemical catalysis to produce chemicals has a series of drawbacks,such as high dependence on fossil resources,high energy consumption,and environmental pollution.With the development of synthetic biology and metabolic engineering,the use of renewable biomass raw materials for chemicals synthesis by constructing efficient microbial cell factories is a green way to replace traditional chemical catalysis and traditional microbial fermentation.This review mainly summarizes several types of bulk chemicals and high value-added chemicals using metabolic engineering and synthetic biology strategies to achieve efficient microbial production.In addition,this review also summarizes several strategies for effectively regulating microbial cell metabolism.These strategies can achieve the coupling balance of material and energy by regulating intracellular material metabolism or energy metabolism,and promote the efficient production of target chemicals by microorganisms.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期14-28,共15页 中国化学工程学报(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21811530003,21861132017,U1663227,21706006)。
  • 相关文献

参考文献1

二级参考文献49

  • 1侯进,沈煜,鲍晓明.酿酒酵母木糖代谢工程中辅酶工程的研究进展[J].中国生物工程杂志,2006,26(2):89-94. 被引量:10
  • 2王翠华,李友元,陈长华,李啸.温度对丙酮酸生物合成动力学、能荷和氧化-还原度的影响[J].生物工程学报,2006,22(2):316-321. 被引量:12
  • 3de Felipe FL, Kleerebezem M, de Vos WM, et al. Cofactor engineering: A novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol, 1998, 180(15): 3804-3808.
  • 4Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: Overview of the approaches and results of pathway rerouting involved in food fermentations Curr Opin Biotechnol, 1999, 10(5): 492-497.
  • 5San KY, Bennett GN, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4(2): 182-192.
  • 6Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng, 2002, 4(3): 217-229.
  • 7Saanchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol, 2005, 117(4): 395-405.
  • 8Bakker BM, Overkamp KM, van Maris AJA, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 2001, 25(1): 15-37.
  • 9Liu LM, Li Y, Shi ZP, et al. Enhancement of pyruvate productivity in Torulopsis glabrata: Increase of NAD(+) availability. J Biotechnol, 2006, 126(2): 173-185.
  • 10Senior A. ATP synthesis by oxidative-phosphorylation. Physiol Rev, 1988, 68(1): 177-231.

共引文献24

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部