期刊文献+

基于大数据挖掘的矿井旋转机械状态评估系统 被引量:3

State Evaluation System of Mine Rotating Machinery Based on Big Data Mining
下载PDF
导出
摘要 设备的智能化状态评估和预测维修是构建智慧能源的核心要素之一。以转子动力学、现代信号处理和人工智能技术为基础,开发了基于历史大数据挖掘和人工智能算法的矿井旋转机械状态评估系统。该系统采用分布式数据采集器构建辅机状态监测网,通过多源信息深度融合分析技术,实现了矿井旋转机械状态的智能评估。 Intelligent state assessment and predictive maintenance of equipment is one of the core elements of building intelligent energy. Based on rotor dynamics, modern signal processing and artificial intelligence technology, a state evaluation system of mine rotating machinery based on historical big data mining and artificial intelligence algorithm is developed. In this system, the distributed data collector is used to build the condition monitoring network of the auxiliary machinery. Through the multi-source information deep fusion analysis technology, the intelligent evaluation of the state of the mine rotating machinery is realized.
作者 李新虎 LI Xinhu(Shaanxi energy Fengjiata mining operation Co.,Ltd,Yulin Shaanxi 719400,China)
出处 《电子器件》 CAS 北大核心 2021年第2期434-438,共5页 Chinese Journal of Electron Devices
关键词 状态评估 趋势预测 人工智能 大数据 state assessment trend prediction artificial intelligence big data
  • 相关文献

参考文献6

二级参考文献116

共引文献571

同被引文献73

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部