摘要
功能梯度材料(FGM)的特性与孔隙量有密切的关系,孔隙率会影响FGM的弹性模量、泊松比和密度等。依据经典薄板理论和Hamilton原理建立了四边受压多孔FGM矩形板自由振动和屈曲的数学模型并对控制方程进行无量纲化。运用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,经过迭代求解,得到多孔FGM矩形板的无量纲固有频率和无量纲临界屈曲载荷。将该问题退化为孔隙率为零时FGM矩形板的自由振动并与其精确解进行对比,发现DTM计算精度较高,这验证了该方法在求解四边受压多孔FGM矩形板自由振动和屈曲问题的有效性。计算结果表明,多孔FGM矩形板的弹性模量随梯度指数与孔隙率的增大而减小。进一步分析了在不同边界条件下长宽比不变时梯度指数、孔隙率对无量纲的固有频率和临界屈曲载荷的影响,以及不同边界条件下长宽比、载荷对无量纲固有频率的影响。
The properties of functionally gradient materials (FGM) are closely related to porosity, which has effect on FGM′s elastic modulus, Poisson′s ratio, density, etc. Based on the classical theory of thin plates and Hamilton principle, the mathematical model of free vibration and buckling of FGM porous rectangular plates with compression on four sides is established. Then the dimensionless form of the governing differential equation is also obtained. The dimensionless governing differential equation and its boundary conditions are transformed by differential transformation method (DTM). After iterative convergence, the dimensionless natural frequencies and critical buckling loads of the FGM porous rectangular plate are obtained. The problem is reduced to the free vibration of FGM rectangular plate with zero porosity and compared with its exact solution. It is found that DTM gives high accuracy result. The validity of the method is verified in solving the free vibration and buckling problems of the porous FGM rectangular plates with compression on four sides. The results show that the elastic modulus of FGM porous rectangular plate decreases with the increase of gradient index and porosity. Furthermore, the effects of gradient index and porosity on dimensionless natural frequencies and critical buckling loads are further analyzed under different boundary conditions with constant aspect ratio, and the effects of aspect ratio and load on dimensionless natural frequencies under different boundary conditions.
作者
滕兆春
席鹏飞
TENG Zhaochun;XI Pengfei(School of Science, Lanzhou University of Technology, Lanzhou 730050, China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2021年第2期317-325,共9页
Journal of Northwestern Polytechnical University
基金
国家自然科学基金(11662008)资助。
关键词
多孔FGM
矩形板
孔隙率
自由振动
屈曲
微分变换法
porous FGM
rectangular plate
porosity
free vibration
buckling
differential transformation method(DTM)