期刊文献+

无人机多域联合抗干扰智能决策算法研究 被引量:7

Exploring UAV′s multi-domain joint anti-jamming intelligent decision algorithm
下载PDF
导出
摘要 针对无人机在战场上通信环境恶劣、信道统计信息未知及抗智能性干扰能力差等问题,研究了多域抗干扰问题,提出一种多域联合抗干扰智能决策算法。在频域上采取信道选择的方式应对干扰,将其建模成一个多臂老虎机信道选择问题,并对信道干扰等级进行评判;对于中度干扰的信道进行功率域上的压制性对抗,将其建模成Stackelberg博弈模型,并求解博弈均衡,得出最佳发射功率,减少频繁切换信道带来的系统开销。仿真结果表明所提算法的系统长期回报明显高于传统多臂老虎机算法和随机选择算法,并且还提高了通信系统的平均吞吐量。 To understand the complex communication environment of a UAV in battlefield, its unknown channel statistics information and poor intelligent jamming and anti-jamming capability, the multi-domain anti-jamming problem is studied, and a multi-domain joint anti-jamming intelligent decision algorithm is proposed. First, the channel selection method is adopted to deal with jamming in the frequency domain. A multi-arm slot machine′s channel selection model is established, and the channel interference level is judged. Secondly, the moderate interference channel is suppressed in the power domain, and the model of its Stackelberg game is established. The game equalization is solved to obtain the best transmission power and reduce the overhead caused by channel switching. The simulation results show that the long-term rewards of the intelligent decision algorithm are significantly higher than those of the traditional multi-arm slot machine′s algorithm and the random selection algorithm and that the average throughput of the communication system of the UAV is improved, thus proving the superiority of the intelligent decision algorithm.
作者 李明 任清华 吴佳隆 LI Ming;REN Qinghua;WU Jialong(College of Information and Navigation, Air Force Engineering University, Xi′an 710077, China;Key Laboratory of Aerospace Information Applications, China Electronics Technology Group, Shijiazhuang 050081, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第2期367-374,共8页 Journal of Northwestern Polytechnical University
基金 国家重点实验室合作基金(kx162600022)资助。
关键词 多域抗干扰 多臂老虎机 信道选择 STACKELBERG博弈 multi-domain anti-jamming multi-arm slot machine channel selection Stackelberg game
  • 相关文献

参考文献1

二级参考文献15

  • 1Zhao Q,Sadler B M. A survey of dynamic spectrum ac-cess [J]. IEEE Signal Processing Magazine,2007,24(3):79-89.
  • 2Mitla J. Cognitive radio for flexible mobile multimediacommunications[J]. Mobile Network and Applications,2001,6(5):435-441.
  • 3Xu Y H,Wu Q H,et al. Decision-Theoretic DistributedChani-nel Selection for Opportunistic Spectrum Access:Strategies,Challenges and Solutions[J]. IEEE Communi-cations Survey & Tutorials,2013,15(4):1689-1713.
  • 4Dong S Y,Lee J W. Greedy confidence bound techniques for restless multi - armed bandit based Cognitive Radio[C] / / Proceedings of 2013 47th Annual Conference onInformation Sciences and Systems. Baltimore, MD:IEEE,2013:1-4.
  • 5Smallwood R,Sondik E. The optimal control of partiallyobservable. Markov processes over a finite horizon [J].Operations Research,1971:1071-1088.
  • 6Agrawal R. Sample mean based index policies withO(log(n)) regret for the multi-armed bandit problem[J].Advance Application Probability,1995,27(4):1054-1078.
  • 7AuerP,Cesa-Bianchi N,Fischer P. Finite-time Analysisof the Multi-armed Bandit Problem[J]. Machine Learn-ing,2002,47(2-3):235-256.
  • 8Robert C,Moy C, Wang C X. Reinforcement learning ap-proaches and evaluation criteria for opportunistic spectrumaccess [C] / / Proceedings of 2014 IEEE InternationalConference on Communications. Sydney: IEEE, 2014:1508-1513.
  • 9Tekin C,Liu M. Online learning of rested and restlessbandits[J]. IEEE Transactions on Information Theny,2012,58(8):5588-5611.
  • 10Dai W,Gai Y, Krishnamachari B. Efficient online learningfor opportunistic spectrum access [C]/ / Proceedings ofIEEE INFOCOM. Orlando, FL:IEEE,2012:3086-3090.

共引文献3

同被引文献61

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部