期刊文献+

基于BP_Adaboost算法的风电机组叶片结冰检测 被引量:11

Wind turbine blade ice detection based on BP_Adaboost algorithm
下载PDF
导出
摘要 精准预测冬季风电机组是否处于叶片结冰状态成为亟待解决的技术难题。Adaboost算法具有预测精度高、可使用简单弱分类器等优点。文章在传统BP神经网络算法的基础上,提出了BP_Adaboost算法精准预测风电机组是否处于叶片结冰状态。首先,将SCADA历史监测的相关信息进行重采样;其次,运用BP_Adaboost算法对叶片状态进行预测;最后,选择6台风电机组的历史数据进行实验验证。实验结果表明,由BP_Adaboost算法构建的强分类器在检测风电机组是否处于叶片结冰故障时,比BP神经网络构成的弱分类器平均得分高12%左右。BP_Adaboost算法已在部分风电场进行了实际应用。 It is an urgent technical problem to accurately predict the state of blade icing in wind turbines.Due to the advantages of Adaboost algorithm,such as high prediction accuracy and simple weak classifier,a BP_Adaboost algorithm is based on the traditional BP neural network algorithm and proposed to accurately predict the state of blade icing in wind turbines.Firstly,the relevant information of SCADA historical monitoring was resampled.Secondly,BP_Adaboost algorithm was used to predict the blade state.Finally,the historical data of 6 wind turbines are selected for experimental verification.The results show that the strong classifier built by BP_Adaboost algorithm has about 12%higher average score than the weak classifier built by BP network when detecting if the wind turbines are in blade icing failure.The research content of this paper has been applied in some wind farms.
作者 董健 柳亦兵 滕伟 马志勇 Dong Jian;Liu Yibing;Teng Wei;Ma Zhiyong(Guodian United Power Technology Co.,Ltd.,Beijing 100039,China;Key Laboratory of Power Station Energy Transfer Conversion and System,North China Electric Power University,Beijing 102206,China)
出处 《可再生能源》 CAS CSCD 北大核心 2021年第5期632-636,共5页 Renewable Energy Resources
基金 河北省科技计划项目(15214307D)。
关键词 BP_Adaboost 风电机组 叶片结冰 机器学习 BP_Adaboost wind turbine blades freezing machine learning
  • 相关文献

参考文献6

二级参考文献27

  • 1张建卓,董申,李旦.基于正负刚度并联的新型隔振系统研究[J].纳米技术与精密工程,2004,2(4):314-318. 被引量:49
  • 2FORTIN G and PERRON J. Wind turbine icing and de-icing [ R]. AIAA 2009 -274, 2009.
  • 3MATI'HEW C HOMOI,A, MUHAMMAD S VIRK, TOMAS WALLENIUS, etc. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades [J]. Wind Energy, 2010, 98(12) :724 -729.
  • 4HOMOLA M C, WALLENIUS T, MAKKONEN L, NICK- LASSON P, SUNDSBo P A. The relationship between chord length and rime icing on wind turbines [ J ]. Wind Energy, 2010,13(7) :627 -632.
  • 5VIRK M S, HOMOLA M C, NICKLASSON P J. Effect of rime ice accretion on aerodynamic characteristics of wind tur- bine blade profiles [ J ]. Wind Engineering , 2010,34 (2) : 207 -218.
  • 6DUNCAN T, LEBLANC M, MORGAN C, LANDBERG L.Understanding icing losses and risk of ice throw at operating wind farms[J]. Winterwind,2008,31(2) :263 -270.
  • 7CHUNG, JAMES, BEEHORST, ANDREW, CHOO, YUNG, POTAPCZUK, MARK and SLATER, JOHN. Navier-Stokes a- nalysis of flowfield characteristics of an ice-contaminated air- craft wing[R]. AIAA-1999 -0375.
  • 8SHIM, JEONGHWAN, CHUNG, JUNE, and LEE, KI D.A comparison of turbulence modeling in flow analysis of iced airfoils[ R]. AIAA 2000 - 3920, January 2000.
  • 9RICHARD E KREEGER, WILLIAM B WRIGHT. The influ- ence of viscous effects on ice accretion prediction and airfoil performance predictions[ R]. AIAA -2005 - 1373.
  • 10GARY A RUFF and BRIAN M BERKOWITZ. Users manual for the NASA Lewis ice accretion prediction code (LEWICE) [R]. NASA CR -185129, May 1990.

共引文献81

同被引文献134

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部