期刊文献+

全向移动嗅觉机器人在危化品仓储环境下的应用研究

Application of omnidirectional mobile olfactory robot in hazardous chemicals storage environment
下载PDF
导出
摘要 近年来,危化品造成的有毒有害气体泄漏事件层出不穷。针对危化品仓储环境下泄漏监测手段的不足,提出了一套基于高斯烟羽模型仿真的、进化梯度算法的仿生搜索策略的嗅觉信息的全向移动机器人平台,可以及时发现和定位气体泄漏源,最大限度地从源头上降低各种安全事故带来的损失。 In recent years,toxic and harmful gas leakage caused by dangerous chemicals has emerged in endlessly.Aiming at the shortage of leak monitoring methods in hazardous chemicals storage environment,an omnidirectional mobile robot platform based on the bionic search strategy of Gauss plume model simulation and evolutionary gradient algorithm is proposed,which can detect and locate the gas leakage source in time and minimize the loss caused by various safety accidents from the source.
作者 汪静 WANG Jing(Datong Teachers College,Datong Shanxi 037000,China)
出处 《山西化工》 2021年第2期69-72,共4页 Shanxi Chemical Industry
关键词 全向移动机器人 危化品 泄漏源判定 应用 omnidirectional mobile robot dangerous chemicals leak source determination application
  • 相关文献

参考文献2

二级参考文献23

  • 1孟庆浩,李飞.主动嗅觉研究现状[J].机器人,2006,28(1):89-96. 被引量:41
  • 2匡兴红,邵惠鹤.基于传感器网络的气体源定位方法研究[J].系统仿真学报,2007,19(7):1464-1467. 被引量:17
  • 3李俊彩,孟庆浩,梁琼.基于进化梯度搜索的机器人主动嗅觉仿真研究[J].机器人,2007,29(3):234-238. 被引量:17
  • 4天津费加罗电子有限公司.TGS传感器通用资料[EB/OL3,http://www.tjfigaro.com.
  • 5Russell R A, Bab-Hadiashar A, Shepherd R L, et al. A comparison of reactive robot chemotaxis algorithms[J]. Robotics and Autonomous Systems, 2003, 45(2): 83-97.
  • 6Ishida H, Suetsuqu K, Nakamoto T, et al. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[J]. Sensors and Actuators, A: Physical, 1994, 45(2): 153-157.
  • 7Kowadlo G, Rawlinson D, Russell R A, et al. Bi-modal search using complementary sensing (olfaction/vision) for odour source localisation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 2041-2046.
  • 8Ishida H, Tanaka H, Taniquchi H, et al. Mobile robot navigation using vision and olfaction to search for a gas/odor source[J]. Autonomous Robots, 2006, 20(3): 231-238.
  • 9Tsotsos J K, Culhane S M, Wai W Y K, et al. Modeling visual attention via selective tuning[J]. Artificial Intelligence, 1995, 78(1-2): 507-545.
  • 10Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部