期刊文献+

一种新颖的基于混合不确定性的特征选择方法 被引量:2

A novel feature selection method based on mixed uncertainty
下载PDF
导出
摘要 基于混合不确定性的特征选择方法(简称SU-P方法),利用对称不确定性找出相关特征,并利用偏相关分析去除数据集中的冗余特征。将SU-P方法与其它传统算法进行了仿真对比。 The mixed-uncertainty-based feature selection method(SU-P method in short),is to use symmetric uncertainty to find the relevant features and partial correlation analysis to remove redundant features in the data set.It is compared with other traditional algorithms in simulation.
作者 苏婷婷 胡明 赵佳 SU Tingting;HU Ming;ZHAO Jia(School of Computer Science & Engineering, Changchun University of Technology, Changchun 130012, China)
出处 《长春工业大学学报》 CAS 2021年第2期147-152,共6页 Journal of Changchun University of Technology
基金 国家自然科学基金面上项目(61972054) 吉林省教育厅“十三五”科学技术研究规划基金资助项目(JJKH20200620KJ,JJKH20200622KJ) 吉林省发改委产业技术研究与开发专项基金资助项目(2021C045-6) 吉林省第四批青年科技托举人才项目(QT202001) 长春工程学院主题基金(320200052,320200053) 长春工程学院博士创新团队科研启动基金。
关键词 特征选择 对称不确定性 偏相关分析 feature selection symmetric uncertainty partial correlation analysis
  • 相关文献

参考文献3

二级参考文献32

  • 1陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(S1):287-291. 被引量:31
  • 2Azizi A. Efficient IRIS recognition through improvement of fea-ture extraction and subset selection [ J ]. International journalof computer science and information security ,2009,2( 1) :72-73.
  • 3Yu Lei, Liu Huan. Efficient feature selection via analysis ofrelevance and redundancy [ J ]. Machine learning research,2004,5(1):1207-1220.
  • 4Hall M A,Smith L A. Feature subset selection: A correlationbased filter approach [ C ] //Proc of international conference onneural information processing. [ s. 1. ] : [ s. n. ] ,1997 :2-4.
  • 5Hsu W H. Genetic wrappers for feature selection in decisiontree induction and variable ordering in Bayesian networkstructure learning [ J ]. Information sciences,2004, 163 ( 1):105-120.
  • 6Karegowda A G, Manjunath A S, Jayaram M A. Comparativestudy of attribute selection using gain ratio and correlationbased feature selection [ J ]. International journal of informationtechnology and knowledge management, 2010, 2(2): 271 -274.
  • 7Chena Y,Abrahama A’Yanga B. Feature selection and classi-fication using flexible neural tree [ J ]. Neurocomputing,2006,70(1):306-308.
  • 8Koller D, Sahami M. Toward optimal feature selection[ C ]//Proceedings of international conference on machine learning,[s.l. ].[s. n. ],1996:162-187.
  • 9Forman G. An extensive empirical study of feature selectionmetrics for text classification[J]. Machine research learning,2003(3) :1289-1305.
  • 10Sheikhi N, Rahmani A, Mohsenzadeh M. An unsupervised fea-ture selection method based on genetic algorithm[ J]. Interna-tional journal of computer science and information security,2011,24(3) ;117-120.

共引文献153

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部